DOI: 10.7242/1999-6691/2013.6.4.43 УДК 539.3

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ РАЗРУШЕНИЯ ТКАНЕВЫХ КОМПОЗИТОВ

Ю.И. Димитриенко, С.В. Сборщиков, А.П. Соколов, Ю.В. Шпакова

Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия

Предложена математическая модель процесса разрушения тканевых композиционных материалов, основанная на использовании метода асимптотического осреднения и конечно-элементного решения локальных задач на ячейках периодичности. В качестве критерия прочности матрицы используется модифицированная модель Писаренко–Лебедева, а критерия прочности армирующих нитей — двухуровневая модель повреждаемости пучка моноволокон. Модель позволяет прогнозировать процесс распространения микроразрушения в ячейке периодичности композита при изменении действующей на композит системы нагрузок. Приведены численные примеры, демонстрирующие возможности разработанной модели при применении ее к численному исследованию процессов микроразрушения тканевых композитов.

Ключевые слова: тканевые композиты, углепластики, микроразрушение, численное моделирование, метод конечных элементов, метод асимптотического осреднения, ячейка периодичности, тензор концентрации напряжений, критерий прочности, повреждаемость

COMPUTATIONAL MODELING OF FAILURE OF TEXTILE COMPOSITES

Yu.I. Dimitrienko, S.V. Sborschikov, A.P. Sokolov and Yu.V. Shpakova

Bauman Moscow State Technical University, Moscow, Russia

A mathematical model of failure of textile composite materials is proposed. The model is based on the asymptotic averaging method and the application of the finite-element method to solving local problems in the periodicity cell. As a criterion of the matrix strength, the modified Pisarenko–Lebedev model is used. As a criterion of the reinforcing fiber strength, the two-level damage model for a monofiber bundle is applied. The model developed allows us to forecast the propagation of micro-destruction in the periodicity cell of a composite under varying load combinations. Computational results show the possibilities of the developed model for numerical investigation of microdestruction of textile composites.

Key words: textile composites, carbon/epoxy composites, micro-destruction, computational modeling, finite-element method, asymptotic averaging method, periodicity cell, stress concentration tensor, strength criteria, damage

1. Введение

Композиционные материалы, армированные тканями (текстолиты), являются одним из наиболее широко распространенных в настоящее время типов композитов. Экспериментальное определение полного набора упругих и прочностных характеристик тканевых композитов, являющихся ортотропными материалами с 9 упругими константами и, минимум, 9 прочностными характеристиками (пределами прочности на растяжение и сжатие по трем главным осям ортотропии и пределами прочности при трёх сдвигах), достаточно сложно, а таких характеристик, как прочности при поперечном растяжении и межслойных сдвигах — технически трудно реализуемо. Приближенных методов расчета упруго-прочностных характеристик тканевых композитов довольно много, укажем лишь некоторые работы [1–7], однако в последнее время возник значительный интерес к численным методам конечно-элементного моделирования микроразрушения композитов [8–26]. Одним из наиболее перспективных методов такого рода является метод асимптотического осреднения (или метод гомогенизации) [27–30], применение которого для конечно-элементного анализа микромеханики композиционных материалов и расчета их эффективных характеристик осуществлено в работах [31–38].

Настоящая работа является продолжением исследований в этой области и посвящена разработке конечно-элементного метода моделирования процессов разрушения тканевых композитов и методике численного определения их прочностных характеристик.

2. Математическая постановка локальных задач теории упругости

Тканевый композиционный материал имеет достаточно четко выраженную периодическую структуру, ячейка периодичности (ЯП) которой показана на рисунке 1 для одного из возможных типов плетения ткани — сатинового. Для периодических структур можно применять метод асимптотического осреднения [31–38], позволяющий при расчете эффективных характеристик композитов сформулировать специальные, так называемые локальные, задачи на ЯП. Так, при определении эффективных упругих характеристик тканевых композитов формулируются локальные задачи L_{pq} (p,q=1,2,3) в \tilde{V}_{ξ} — на 1/8 части ЯП:

$$\begin{aligned} \sigma_{ij(pq)/j} &= 0 & \text{B} \quad \tilde{V}_{\xi}, & 1 \\ \sigma_{ij(pq)} &= C_{ijkl} (\xi^{l}, z_{1}, z_{2}) \varepsilon_{kl(pq)} & \text{B} \quad \tilde{V}_{\xi} \cup \Sigma'_{s} \cup \Sigma_{s}, & 2 \\ \varepsilon_{ij(pq)} &= \left(U_{i(pq)/j} + U_{j(pq)/i} \right) / 2 & \text{B} \quad \tilde{V}_{\xi}, & 3 \\ & \left[U_{i(pq)} \right] &= 0, \quad \left[\sigma_{ij(pq)} \right] &= 0 & \text{Ha} \quad \tilde{\Sigma}_{\xi \alpha N}, & 4 \end{aligned}$$

4

где
$$U_{i(pq)}(\xi_i)$$
 — компоненты вектора перемещений (искомые неизвестные функции задачи); $\sigma_{ij(pq)}$; $\varepsilon_{kl(pq)}$ — компоненты тензоров напряжений и деформаций в ЯП; ξ^l — «локальные» безразмерные координаты в ЯП, изменяющиеся в диапазоне $0 \le \xi^l \le a_l$, где a_l — длины сторон \tilde{V}_{ξ} . В системе (1) также обозначено: ${}_{Il} = \partial/\partial\xi^l$ — производные по локальным координатам; $[U_{i(pq)}] = 0$ — скачки функций на поверхностях раздела $\tilde{\Sigma}_{\xi\alpha N}$ компонентов композита, где $\alpha = 1 \dots N - 1$ — номера армирующих компонентов (нитей) композита, $\alpha = N$ — индекс, соответствующий матрице композита; $C_{ijkl}(\xi^l, z_1, z_2)$ — компоненты тензоров модулей упругости структурных компонентов композита (их различие для разных компонентов композита, выражения для которых будут представлены далее.

Рис. 1. Фотография реальной микроструктуры тканевого композита (а) и ее компьютерная модель (б) (показаны нити в отсутствие матрицы)

Система (1) дополняется специальными граничными условиями на торцевых поверхностях $\Sigma'_s = \{\xi^s = a_s\}$ объема \tilde{V}_{ξ} :

$$\begin{array}{ll} \text{Ha } \Sigma_{i}': & U_{i(pp)} = \overline{\varepsilon}_{pp} \delta_{ip} / 2, & U_{j(pp)/i} = 0, & U_{k(pp)/i} = 0 & (i \neq j \neq k \neq i), \\ \text{Ha } \Sigma_{j}': & U_{i(pq)} = \overline{\varepsilon}_{pq} \delta_{ip} / 4, & U_{j(pq)/j} = 0, & U_{k(pq)} = 0 & (i, j = \{p, q\}), \\ \text{Ha } \Sigma_{k}': & U_{i(pq)/k} = 0, & U_{j(pq)/k} = 0, & U_{k(pq)} = 0 & (i \neq j \neq k \neq i, \ p \neq q). \end{array}$$

Граничные условия на плоскостях симметрии $\Sigma_s = \{\xi_s = 0\}$ имеют аналогичный вид, но на них полагается отсутствие осредненных по ЯП деформаций, являющихся входными данными (задаваемыми величинами) задачи L_{pq} : $\overline{\epsilon}_{pq} = 0$. Если повреждаемость матрицы и нитей отсутствует ($z_1 = z_2 = 0$), то при каждом фиксированном наборе значений p,q=1,2,3 задача (1), (2) представляет собой задачу линейной теории упругости с граничными условиями специального вида; если же $z_1 > 0$, $z_2 > 0$, то задача (1), (2) нелинейная.

3. Расчет компонент тензоров модулей упругости матрицы и армирующих нитей с учетом повреждаемости

В ЯП тканевого композита имеется три структурных компоненты (N = 3): армирующие нити двух типов, ориентированные по двум взаимно-ортогональным направлениям $O\xi_1$ и $O\xi_2$, и окружающая их матрица. Нити 1-го и 2-го типов искривлены в плоскостях Оξ₁ξ₃ и Оξ₂ξ₃ соответственно, при этом форма искривления обычно близка к волне синусоиды (Рис. 2). В реальных композитах нити образуют не монолитный материал, а материал, состоящий из большого числа (обычно из нескольких тысяч) моноволокон, которые также соединены между собой связующей их матрицей (вопросы исследования влияния эффекта неполной пропитки моноволокон нитей связующим, который иногда имеет место в реальных тканевых композитах, в данной работе не рассматриваются).

0

Рис. 2. Модель искривленной нити в ЯП (a) и 1D-элемент моноволокон в составе нити (б)

Ввиду такой специфической структуры, даже если моноволокна изотропны (например, стеклянные), нить уже является криволинейно-трансверсально-изотропным материалом; ось ее трансверсальной изотропии $O\xi'_1$ (или $O\xi'_2$ для 2-й системы нитей) в каждой точке ξ_k ориентирована по касательной к средней линии нити (Рис. 2). Для вычисления компонент тензора модулей упругости нити $C^{(\alpha)}_{ijkl}(\xi_k, z_1, z_2) = C_{ijkl}(\xi_k, z_1, z_2), \quad \xi_k \in \tilde{V}_{\xi\alpha}$ ($\tilde{V}_{\xi\alpha}$ — область в ЯП, занятая α -й нитью, в системе координат $O\xi_i$, связанной с ЯП) воспользуемся приближенной моделью смесевого типа [3, 4], согласно которой нить рассматривается как система последовательно расположенных однонаправленных 1D-элементов, повернутых на некоторый угол $\phi_{\alpha}(\xi_k)$, соответствующий углу поворота средней линии α -й нити. Тогда в системе координат $O\xi'_i$ нити (ось $O\xi'_{\alpha}$ направлена по касательной к средней линии нити) технические модули упругости нити можно вычислить по следующим формулам:

$$E_{t} = E_{f} \varphi_{f} + E_{m} (1 - \varphi_{f}), \qquad E_{t} = \left(\varphi_{f} / E_{f} + (1 - \varphi_{f}) / E_{m} \right)^{-1}, \nu_{l} = \nu_{f} \varphi_{f} + \nu_{m} (1 - \varphi_{f}), \qquad \nu_{t} = \nu_{m},$$
(3)
$$G_{l} = \left(2\varphi_{f} (1 + \nu_{f}) / E_{f} + 2(1 - \varphi_{f})(1 + \nu_{m}) / E_{m} \right)^{-1},$$

где E_t — продольный модуль упругости нити в направлении $O\xi'_{\alpha}$; E_t — поперечный модуль упругости в плоскости, ортогональной к $O\xi'_{\alpha}$; v_t и v_t — продольный и поперечный коэффициенты Пуассона; G_t и $G_t = E_t / (2(1+v_t))$ — продольный и поперечный модули сдвига нити. В (3) также обозначено: E_f , E_m модули упругости моноволокон и матрицы; G_m — модуль сдвига матрицы; v_f , v_m — коэффициенты Пуассона волокон и матрицы; ϕ_f — относительное объемное содержание моноволокон в нитях.

По полученным значениям упругих констант нити (3) вычисляется тензор упругих податливостей $\Pi^{(\alpha)}_{ijkl}$ 1D-элемента первой нити:

$$(\Pi_{ijkl}^{(\alpha)'}) = \begin{bmatrix} 1/E_l & -v_l/E_l & 0 & 0 & 0\\ -v_l/E_l & 1/E_t & -v_l/E_t & 0 & 0 & 0\\ -v_l/E_l & -v_t/E_t & 1/E_t & 0 & 0 & 0\\ 0 & 0 & 0 & 1/(2G_l) & 0 & 0\\ 0 & 0 & 0 & 0 & 1/(2G_l) & 0\\ 0 & 0 & 0 & 0 & 0 & 1/(2G_l) \end{bmatrix}.$$
(4)

Тензор второй нити находится также по формуле (4), но в $\Pi_{ijkl}^{(\alpha)'}$ необходимо сделать циклическую перестановку индексов: 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1. Тензор модулей упругости нитей в системе координат $O\xi_i'$ является обратным тензору упругих податливостей: $C_{ijkl}^{(\alpha)'} = (\Pi_{ijkl}^{(\alpha)'})^{-1}$.

В развиваемой здесь модели предполагается, что нить может частично разрушиться, когда параметр повреждаемости $z_1^{(\alpha)}$ достигнет значения 1; при этом обнуляются все упругие модули, кроме $C_{\alpha\alpha\alpha\alpha}^{(\alpha)}$. Частичное разрушение происходит вследствие того, что в составе нити теряет целостность только матрица, а моноволокна ее сохраняют. Если же значение 1 примет параметр повреждаемости $z_2^{(\alpha)}$, то происходит полное разрушение нити, так как разрыв моноволокон влечет за собой и разрушение окружающей их

матрицы. При полном разрушении нити обнуляются все упругие модули $C_{ijkl}^{(\alpha)'}$. С учетом сказанного выражение для компонент тензора модулей упругости нити в системе координат $O\xi'_i$ можно записать так:

$$C_{ijkl}^{(\alpha)'} = \left(1 - h(z_1^{(\alpha)} - 1)\right) \left(1 - h(z_2^{(\alpha)} - 1)\right) \left(\Pi_{ijkl}^{(\alpha)'}\right)^{-1} + h(z_2^{(\alpha)} - 1) C_{\alpha\alpha\alpha\alpha}^{(\alpha)'} \delta_{\alpha i} \delta_{\alpha j} \delta_{\alpha k} \delta_{\alpha l},$$
(5)

где $h(z_2^{(\alpha)}-1)$ — функция Хевисайда: $h(z_2^{(\alpha)}-1)=0$, если $z_2^{(\alpha)}<1$, и $h(z_2^{(\alpha)}-1)=1$, если $z_2^{(\alpha)}\geq 1$.

Для нахождения компонент тензора модулей упругости нити в единой системе координат $O\xi_i$ используются формулы преобразования компонент тензора 4-го ранга при повороте системы координат на угол $\phi_{\alpha}(\xi_k)$

$$C_{ijkl}^{(\alpha)}(\xi^{l}, z_{1}, z_{2}) = C_{ijkl}^{(\alpha)'}(z_{1}^{(\alpha)}, z_{2}^{(\alpha)})Q_{i}^{(\alpha)m}(\xi_{k})Q_{j}^{(\alpha)n}(\xi_{k})Q_{k}^{(\alpha)s}(\xi_{k})Q_{l}^{(\alpha)r}(\xi_{k}), \qquad (6)$$

где $Q_i^{(\alpha)m}(\xi_k)$ — матрицы преобразования поворота вокруг осей $O\xi_2$ и $O\xi_1$ соответственно:

$$Q_{i}^{(1)m}(\xi_{k}) = \begin{pmatrix} \cos\varphi_{1}(\xi_{k}) & 0 & \sin\varphi_{1}(\xi_{k}) \\ 0 & 1 & 0 \\ -\sin\varphi_{1}(\xi_{k}) & 0 & \cos\varphi_{1}(\xi_{k}) \end{pmatrix}, \qquad Q_{i}^{(2)m}(\xi_{k}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi_{2}(\xi_{k}) & \sin\varphi_{2}(\xi_{k}) \\ 0 & -\sin\varphi_{2}(\xi_{k}) & \cos\varphi_{2}(\xi_{k}) \end{pmatrix}.$$
(7)

Материал композитной матрицы предполагается изотропным, тензор его упругих податливостей $\Pi_{ijkl}^{(3)}$ одинаков в системах координат О ξ'_i и О ξ_i , и выражается через технические упругие константы E_m, v_m стандартным образом [39]:

$$\Pi_{ijkl}^{(3)} = -\left(\nu_m / E_m\right) \delta_{ij} \delta_{kl} + \left(\nu_m / \left(2\left(1 + E_m\right)\right)\right) \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}\right),\tag{8}$$

где δ_{il} — символ Кронекера. Если происходит разрушение матрицы в какой-либо точке ЯП, то все компоненты тензоров модулей упругости обнуляются: $C_{ijkl}^{(3)} = (\Pi_{ijkl}^{(3)})^{-1} = 0$.

4. Эффективные упругие характеристики композита

Тензор эффективных модулей упругости композита \overline{C}_{ijpq} , связывает осредненные напряжения и деформации композита: $\overline{\sigma}_{ij} = \overline{C}_{ijkl} \overline{\epsilon}_{kl}$. Для определения компонент этого тензора воспользуемся решением серии локальных задач L_{pq} (1), (2). После численного решения задач L_{pq} становятся известными поля перемещений $U^{\alpha}_{i(pq)}$ и напряжений $\sigma_{ij(pq)}(\xi_k)$ в ЯП при заданных значениях средних деформаций $\overline{\epsilon}_{kl}$. По этим полям найдем средние напряжения в ЯП

$$\left\langle \sigma_{ij} \right\rangle = \sum_{p,q}^{3} \overline{\sigma}_{ij(pq)}, \quad \text{где} \quad \overline{\sigma}_{ij(pq)} = \left\langle \sigma_{ij(pq)} \right\rangle = \int_{V_{\xi}} \sigma_{ij(pq)}(\xi_k) dV_{\xi}. \tag{9}$$

Тогда компоненты тензора эффективных модулей упругости композита вычисляются по формулам

$$\overline{C}_{ijpq} = \overline{\sigma}_{ij(pq)} / \overline{\varepsilon}_{pq} , \qquad (10)$$

где по *p* и *q* суммирование отсутствует. Вслед за компонентами тензора модулей упругости \overline{C}_{ijpq} рассчитаем компоненты эффективного тензора упругих податливостей $\overline{\Pi}_{ijpq}$, являющиеся обратными \overline{C}_{ijpq} . В результате становятся известными девять технических упругих констант композита: $E_a = 1/\overline{\Pi}_{aaaa}$ — модули Юнга; $v_{\alpha\beta} = -E_a\overline{\Pi}_{\alpha\alpha\beta\beta}$ — коэффициенты Пуассона; $G_{\alpha\beta} = \overline{C}_{\alpha\beta\alpha\beta}$ — модули сдвига. Затем, используя формулу (10), осуществим проверку качества численного решения на предмет выполнения условий симметрии по парам индексов [39]: $\overline{C}_{ijpq} = \overline{C}_{pqij}$.

5. Компоненты тензоров концентраций напряжений в матрице и в нитях

Компоненты тензоров концентраций напряжений B_{ijkl}^{α} связывают микронапряжения в матрице и в нитях $\overline{\sigma}_{kl}$ со средними напряжениями в композите — $\sigma_{ij}^{(\alpha)}(\xi_k) = \sum_{p,q}^{3} \sigma_{ij(pq)}(\xi_k)$, согласно формулам:

$$\sigma_{ij}^{(\alpha)}(\xi_k) = B_{ijkl}^{(\alpha)}(\xi_k)\overline{\sigma}_{kl}, \quad \xi_k \in \widetilde{V}_{\xi\alpha} \quad (\alpha = 1, 2, 3).$$

$$\tag{11}$$

Сами компоненты B_{ijkl}^{α} в матрице и в нитях зависят от компонент эффективного тензора упругих податливостей следующим образом [32, 36]:

$$B_{ijpq}^{(\alpha)}(\xi_k) = \sigma_{ij(kl)}(\xi_k) \ \overline{\Pi}_{klpq}, \qquad \xi_k \in \tilde{V}_{\xi\alpha} \quad (\alpha = 1, 2, 3).$$
(12)

Коэффициенты концентрации напряжений в той части матрицы, которая находится в составе нити, вычисляются по формулам [4]:

$$B_{m1} = E_m / E_l$$
, $B_{m2} = E_m / E_l$, $B_{m3} = G_m / G_l$, $B_{m4} = \text{tg}(\varphi_f)$. (13)

Напряжения в нитях $\sigma_{ij}^{(\alpha)'}(\xi_k)$ в системе координат $O\xi_i'$ определяются с помощью матриц преобразования поворота

$$\sigma_{ii}^{(\alpha)'}(\xi_k) = \sigma_{ln}^{(\alpha)'}(\xi_k) Q_i^{(\alpha)l}(\xi_k) Q_i^{(\alpha)n}(\xi_k) .$$

$$\tag{14}$$

6. Критерии прочности матрицы и нити

Критерий прочности изотропной матрицы в составе ЯП (вне нитей) выбирается в данной работе в виде модифицированного критерия прочности типа Писаренко–Лебедева [40], который образуется совокупностью трех отдельных критериев разрушения: при растяжении, сжатии и совместном нагружении. При растяжении ($\sigma^{(3)} > \sigma_{Tm}$) и сжатии ($\sigma^{(3)} < -\sigma_{Cm}$,) критерий прочности является критерием Мизеса

$$\sigma_u^{(3)} = \sigma_{Tm}, \quad \mathbf{H} \quad \sigma_u^{(3)} = \sigma_{Cm},$$

а в области ($-\sigma_{Cm} < \sigma^{(3)} < \sigma_{Tm}$,) — критерием типа Ягна

$$B_{1}\sigma^{(3)} + \left(B_{0}\sigma^{(3)}\right)^{2} + \left(B_{2}\sigma_{u}^{(3)}\right)^{2} = 1,$$
(15)

где обозначено: σ_{Cm} , σ_{Tm} , σ_{Sm} — пределы прочности матрицы на сжатие, растяжение и сдвиг; коэффициенты

$$B_{1} = (\sigma_{Cm} - \sigma_{Tm}) / (\sigma_{Cm} \sigma_{Tm}), \quad B_{0} = 1 / (\sigma_{Cm} \sigma_{Tm}) - 1 / (3\sigma_{Sm}^{2}), \quad B_{2} = 1 / (3\sigma_{Sm}^{2}); \quad (16)$$

1-й и 2-й инварианты тензора напряжений

$$\sigma_{u}^{(3)} = \sigma_{ii}^{(3)},$$

$$\sigma_{u}^{(3)} = \frac{1}{\sqrt{2}} \left(\left(\sigma_{11}^{(3)} - \sigma_{22}^{(3)} \right)^{2} + \left(\sigma_{11}^{(3)} - \sigma_{33}^{(3)} \right)^{2} + \left(\sigma_{22}^{(3)} - \sigma_{33}^{(3)} \right)^{2} + 6 \left(\left(\sigma_{12}^{(3)} \right)^{2} + \left(\sigma_{23}^{(3)} \right)^{2} + \left(\sigma_{13}^{(3)} \right)^{2} \right) \right)^{1/2}.$$
(17)

Критерий прочности (15) можно записать в единой форме с помощью функции Хевисайда h(X):

$$z^{(3)}(\sigma_{ii}^{(3)}) = 1, \tag{18}$$

где $z^{(3)}(\sigma_{ij}^{(3)})$ — параметр повреждаемости матрицы:

$$z^{(3)}(\sigma_{ij}^{(3)}) = \frac{\sigma_{u}^{(3)}}{\sigma_{Tm}}h\left(\frac{\sigma_{u}^{(3)}}{\sigma_{Tm}}\right) + \frac{\sigma_{u}^{(3)}}{\sigma_{Cm}}h\left(-\frac{\sigma^{(3)}}{\sigma_{Cm}}\right) + \left(B_{1}\sigma^{(3)} + B_{0}(\sigma^{(3)})^{2} + B_{2}(\sigma_{u}^{(3)})^{2}\right)\left(1 - h\left(\frac{\sigma^{(3)}}{\sigma_{Tm}}\right) - h\left(-\frac{\sigma^{(3)}}{\sigma_{Cm}}\right)\right).$$
(19)

Критерий прочности α-й нити формулируется для каждого ее отдельного 1D-элемента в собственной системе координат. Этот критерий имеет следующий вид [4]:

$$z_1^{(\alpha)}(\sigma_{ij}^{(\alpha)'}) = 1$$
 или $z_2^{(\alpha)}(\sigma_{ij}^{(\alpha)'}) = 1$, (20)

где $z_1^{(\alpha)}$ и $z_2^{(\alpha)}$ — параметры повреждаемости 1D-элемента ($z_1^{(\alpha)}$ описывает накопление повреждений вследствие разрыва отдельных моноволокон, а параметр $z_2^{(\alpha)}$ — накопление повреждений вследствие растрескивания матрицы без разрушения моноволокон):

$$z_{1}^{(\alpha)} = \frac{\left|\sigma_{\alpha\alpha}^{(\alpha)'}\right| + \sigma_{\alpha\alpha}^{(\alpha)'}}{2\sigma_{Tl}} + \frac{\left|\sigma_{\alpha\alpha}^{(\alpha)'}\right| - \sigma_{\alpha\alpha}^{(\alpha)'}}{2\sigma_{Cl}} \qquad (\alpha = 1, 2);$$

$$z_{2}^{(\alpha)} = \frac{1}{12\sigma_{s}^{2}} \left(Y_{2}^{2} + 12k_{Y}Y_{4}^{2} + 3Y_{3}^{2}\right) + \left(\frac{1}{\sigma_{C}^{2}} - \frac{1}{3\sigma_{s}^{2}}\right)Y_{-}^{2} + \left(\frac{1}{\sigma_{T}^{2}} - \frac{1}{3\sigma_{s}^{2}}\right)Y_{+}^{2}. \qquad (21)$$

В (21) обозначено: инварианты тензора напряжений σ^(α) относительно группы трансверсальной изотропии [41, 42]

$$Y_{2} = \sigma_{33}^{(\alpha)'} + \sigma_{\beta\beta}^{(\alpha)'}, \quad Y_{3}^{2} = \left(\sigma_{33}^{(\alpha)'} - \sigma_{\beta\beta}^{(\alpha)'}\right)^{2} + \left(4\sigma_{3\beta}^{(\alpha)'}\right)^{2}, \quad Y_{4}^{2} = \left(\sigma_{3\alpha}^{(\alpha)'}\right)^{2} + \left(\sigma_{12}^{(\alpha)'}\right)^{2}, \quad Y_{\pm} = \left(|Y_{2}| \pm Y_{2}\right)/2; \quad (22)$$

 $k_{r} = (B_{m3}/B_{m1})^{2}$; пределы прочности 1D-элемента при поперечном растяжении $\sigma_{T_{l}} = \sigma_{T_{m}}/B_{m1}$, при поперечном сжатии $\sigma_{Cl} = \sigma_{Cm}/B_{m1}$, при поперечном сдвиге $\sigma_{Sl} = \sigma_{Sm}/B_{m1}$, при продольном сдвиге $\sigma_{Sl} = \sigma_{Sm}/B_{m3}$, при продольном сжатии $\sigma_{Cl} = \sigma_{Sm}/\sqrt{(B_{m2} - B_{m4})^{2} \cdot y_{ST}^{2} + B_{m2}B_{m4}}$, при продольном растяжении $\sigma_{Tl} = \overline{\sigma}_{f} H_{0} \left(\phi_{f}^{r_{f}} / (1 - \phi_{f})^{s_{f}} \right) \left(E_{f} / (2G_{m}) \right)^{s_{f}} \left(\sigma_{Sm}/\overline{\sigma}_{f} \right)^{\omega_{f}}$ (здесь $\overline{\sigma}_{f}$ — средняя прочность моноволокна, H_{0} , r_{f} , s_{f} , ω_{f} — статистические характеристики моноволокон в нити, характеризующие вероятностные свойства: масштабный эффект прочности, разброс прочностных характеристик моноволокон в нити [4]). В формулу предела прочности при продольном сжатии входит величина y_{ST} , которая определяется как $y_{ST} = \sigma_{Sm}/\sigma_{Tm}$ при условии $B_{m2} > B_{m4}$, иначе $y_{ST} = \sigma_{Sm}/\sigma_{Cm}$.

7. Критерий прочности композита

При вычислении предельных значений напряжений композита, как правило, используется пропорциональное (простое или так называемое мягкое) нагружение, при котором осредненные напряжения изменяются линейно во времени: $\overline{\sigma}_{kl}(t) = \tilde{\sigma}_{kl} t$, где $\tilde{\sigma}_{kl}$ — компоненты тензора скоростей изменения напряжений. При мягком нагружении композита сначала находятся предельные значения напряжений $\overline{\sigma}_{kl}(t^*)$, при которых происходит первоначальное разрушение (то есть впервые выполняется условие (23)) в одном из компонентов (матрице или в нитях) в некоторой точке ЯП $\xi_k^* \in \tilde{V}_{\xi\alpha}$ в момент времени t^* . При дальнейшем увеличении параметра $t > t^*$ область разрушения компонентов композита увеличивается, и при некотором значении t^{***} композит полностью разрушается. Под полным разрушением понимается распространение зоны разрушения на всю область между противоположными сторонами ЯП. После подстановки сначала соотношений (11) в (14), а затем найденных выражений в критерии прочности матрицы (19) или нитей (22), получается условие первоначального разрушения композита

$$\max\left\{z_{1}^{(\alpha)}(Q_{i}^{(\alpha)l}(\xi_{r}^{*})Q_{j}^{(\alpha)n}(\xi_{r}^{*})B_{lnkm}^{(\alpha)}(\xi_{r}^{*})\overline{\sigma}_{km}(t^{*})), z_{2}^{(\alpha)}(Q_{i}^{(\alpha)l}(\xi_{r}^{*})Q_{j}^{(\alpha)n}(\xi_{r}^{*})B_{lnkm}^{(\alpha)}(\xi_{r}^{*})\overline{\sigma}_{km}(t^{*})), z^{(3)}(B_{lnkm}^{(3)}(\xi_{r}^{*})\overline{\sigma}_{km}(t^{*}))\right\} = 1.$$
(23)

Первоначальное разрушение может иметь место в матрице или в нитях (частичное разрушение в нитях является следствием разрушения матрицы, окружающей моноволокна) и влечет за собой изменение модулей упругости в разрушенных областях матрицы или/и нитей в соответствии с описанной выше моделью. При тех значениях $\bar{\sigma}_{km}(t^{**})$, при которых выполняется условие

$$\max\left\{z_{2}^{(\alpha)}(Q_{i}^{(\alpha)l}(\xi_{r}^{**})Q_{j}^{(\alpha)n}(\xi_{r}^{**})B_{lnkm}^{(\alpha)}(\xi_{r}^{**})\overline{\sigma}_{km}(t^{**}))\right\}=1,$$
(24)

частично разрушаются нити; при значениях $\overline{\sigma}_{lm}(t^{***})$, при которых выполняется условие

$$\max\left\{z_{1}^{(\alpha)}(Q_{i}^{(\alpha)l}(\xi_{r}^{***})Q_{j}^{(\alpha)n}(\xi_{r}^{***})B_{lnkm}^{(\alpha)}(\xi_{r}^{***})\overline{\sigma}_{km}(t^{***}))\right\} = 1,$$
(25)

по причине разрыва моноволокон в нитях разрушается композит. Дальнейшее увеличение напряжений $|\overline{\sigma}_{km}(t)| > |\overline{\sigma}_{km}(t^{***})|$ невозможно, так как при этом происходит разрушение всей ЯП. Таким образом, значения $\overline{\sigma}_{km}(t^{***})$ определяют прочность композита при простом нагружении.

8. Методика численного решения локальных задач

Для численного решения локальных задач (1), (2), являющихся, вообще говоря, нелинейными из-за наличия параметров повреждаемости, применялся метод конечных элементов (МКЭ) в сочетании с итерационным методом. На каждой итерации осуществлялась линеаризация определяющих соотношений $C_{ijkl}(\xi^l, z_1, z_2)$, в которых параметры повреждаемости z_1 , z_2 брались с предыдущего шага итерационного цикла. Необходимая для реализации МКЭ вариационная формулировка линеаризованной задачи (1), (2) имела вид:

$$\int_{V} \delta \varepsilon^{\mathrm{T}} \sigma \, dV = \int_{\Sigma} \delta U^{\mathrm{T}} S d\Sigma \,. \tag{26}$$

Здесь обозначено: U — столбцы перемещений, σ , ε , S — столбцы напряжений, деформаций и поверхностных усилий, образуемые компонентами вектора перемещений $U_{i(pq)}$, тензоров напряжений $\sigma_{ij(pq)}$ и деформаций $\varepsilon_{ij(pq)}$, вектора усилий $S_{i(pq)}$, соответственно.

Линеаризованные определяющие соотношения, следующие из уравнений (1_2) , записываются в матричном виде: $\sigma = C\varepsilon$, где C — матрица модулей упругости размером [6×6], составленная из компонент тензора $C_{ijkl}^{(\alpha)}$ стандартным образом [41]. Соотношения Коши (1_3) при матричном представлении имеют вид: $\varepsilon = DU$, где D — матрица линейных дифференциальных операторов [32]. Аппроксимация перемещения U в конечных элементах (КЭ) линейными функциями координат: $U = \Phi q$, где q — столбец узловых перемещений в КЭ, а $\Phi_j(\xi_i)$ — матрица функции формы, дает итоговую разрешающую систему линейных алгебраических уравнений (СЛАУ).

Для решения СЛАУ применялся метод сопряжённых градиентов с различными предобуславливателями, основанными на разложении Холецкого. Рассматривались два типа КЭ: 4-узловой тетраэдр, обеспечивающий линейную аппроксимацию псевдоперемещений U и приводящий к постоянным напряжениям σ в каждом КЭ, а также 10-узловой тетраэдр, обеспечивающий квадратичную аппроксимацию перемещений и линейную аппроксимацию напряжений в КЭ. Конечно-элементные сетки генерировались с помощью свободно распространяемых генераторов сеток. Были созданы три типа сеток с различным числом узлов (Рис. 3): сетка 1 содержала 20 592 узла и 103 693 КЭ; сетка 2 — 201 663 узла и 1 087 938 КЭ; сетка 3 — 454 281 узел и 2 503 187 КЭ. Сетка 1 была достаточно крупной: число КЭ по толщине одной нити не превышало 2–3 элементов; для сетки 2 это число равнялось 5–6 элементам, для сетки 3 — 10–12 элементам.

После начала микроразрушения задача (1), (2) становится нелинейной. Для ее решения применялся итерационный метод. При этом число итераций внешнего цикла по времени *t* до достижения полного разрушения в зависимости от типа КЭ-сетки составляло 50–100; для более мелкой сетки 3 число итераций было максимальным. Число итераций внутреннего цикла (в котором реализовался метод сопряженных градиентов) до начала микроразрушения составляло 250 для сетки 1, 500 — для сетки 2 и 1100 — для сетки 3, при условии достижения одной и той же точности решения СЛАУ. После начала микроразрушения заданной точности, при всех сетках увеличивалось примерно на 25–30%.

Рис. 3. Конечно-элементные сетки 1 (*a*) и 3 (б), созданные для расчета тканевого композита (показаны только нити, матрица не показана); увеличенный фрагмент КЭ-сетки 3 (*в*)

Сравнение решений задачи на различных КЭ-сетках позволило провести анализ влияния сеточного эффекта на их точность. Было установлено, что решение линейной задачи (1), (2) слабо зависит от измельчения КЭ-сетки в рассмотренных пределах: компоненты тензоров концентрации $B_{ijpq}^{(\alpha)}$ изменяют свои значения не более чем на 5–6% при увеличении числа КЭ. После появления области разрушения сеточное влияние становится более существенным, однако и в этом случае максимальное различие компонент тензоров концентрации $B_{ijpq}^{(\alpha)}$ не превышает 10% и уменьшается с измельчением сетки: для сетки 2 было получено максимальное отличие от результатов на сетке 1 на 10%, а для сетки 3 — на 8%. Численное решение СЛАУ, препроцессинг и постпроцессинг, в том числе 3D визуализация и анимация микроразрушения осуществлялись с помощью программного обеспечения, разработанного в научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана (г. Москва) [33].

9. Результаты численного моделирования микроразрушения тканевых композитов

Численные расчеты проводились для тканевого углепластика с простейшим типом переплетения — полотняным. Свойства эпоксидной матрицы и углеродных волокон брались из работы [4]: для матрицы $\sigma_{mT} = 0,016 \Gamma \Pi a; \sigma_{mC} = 0,025 \Gamma \Pi a; \sigma_{mS} = 0,015 \Gamma \Pi a; E_m = 3,3 \Gamma \Pi a; v_m = 0,35; для монолокна <math>\overline{\sigma}_f = 2,2;$ $H_0 = 3,0; \omega_f = 0,33; s_f = 0,07; r_f = 0,25; E_f = 250 \Gamma \Pi a; v_f = 0,25.$ Коэффициент содержания моноволокон в нитях составлял $\phi_f = 0,7$.

Некоторые результаты расчета представлены на рисунках 4–7 для сетки 1. На рисунках 4 и 5 показаны распределения компонент тензора концентрации напряжений $B_{ijpq}^{(\alpha)}$ в матрице и нитях композита (для матрицы введено обозначение $B_{ijpq}^{(m)} = B_{ijpq}^{(3)}$), вычисленные по формулам (12) на основе КЭ решения задач (1), (2) до начала микроразрушения. Из рисунков видно, что вследствие значительно более высокой жесткости моноволокон максимальные значения компонент тензоров концентрации $B_{ijpq}^{(\alpha)}$ достигаются в нитях: они почти на порядок превышают значения компонент концентрации напряжений в матрице. Распределение компонент тензоров концентрации $B_{ijpq}^{(m)}$ в матрице неравномерно: максимумы $B_{ijpq}^{(m)}$ для индексов *i*, *j*, *p*, *q* = 1, 2 располагаются в окрестности краев нитей (зон с максимальной кривизной поверхности разделы матрицы и нитей), а максимумы $B_{ijpq}^{(m)}$ с индексом 3 располагаются в прослойках между соседними нитями по направлению $O\xi_3$. В нитях максимальные значения $B_{1111}^{(\alpha)}$, $B_{2222}^{(\alpha)}$, а также $B_{1112}^{(\alpha)}$, $B_{2211}^{(\alpha)}$. Компоненты $B_{1112}^{(\alpha)}$, $B_{2221}^{(\alpha)}$, компоненты $B_{1112}^{(\alpha)}$, $B_{2211}^{(\alpha)}$, $B_{1112}^{(\alpha)}$, $B_{1212}^{(\alpha)}$,

Рис. 4. Компоненты тензора концентрации напряжений в матрице тканевого композита

Рис. 5. Компоненты тензора концентрации напряжений в нитях тканевого композита

В тех зонах, где достигают максимальных значений компоненты $B_{\alpha\alpha\alpha\alpha}^{(\alpha)}$, $B_{\alpha\beta\alpha\beta}^{(\alpha)}$, $B_{\alpha\alpha\alpha\beta}^{(\alpha)}$, реализуются и максимальные значения параметра повреждаемости до появления первого микроразрушения. После начала первого микроразрушения при дальнейшем увеличении значений макронапряжений $\overline{\sigma}_{kl}$ (t) полностью изменяется распределение компонент тензора концентрации напряжений $B_{ijpq}^{(\alpha)}$ в ЯП — эти компоненты зависят уже от конкретного вида нагружения, то есть от $\overline{\sigma}_{kl}$. До начала микроразрушения такой зависимости нет: распределение компонент $B_{ijpq}^{(\alpha)}(\xi_s)$ в ЯП имеет универсальный характер при всех значениях $\overline{\sigma}_{kl}$.

На рисунке 6, *а* показаны зоны появления микроразрушения в тканевом композите при растяжении в направлении $O\xi_1$ — в направлении укладки одной системы нитей. Эти зоны располагаются в матрице в местах наибольшего искривления нитей, а именно вблизи линий их контакта, и ориентированы ортогонально направлению растяжения. Рисунок 6, *б* демонстрирует распределение нормальной компоненты напряжений $\sigma_{11}^{(\alpha)}(\xi_k)$ в ЯП при этом же виде деформирования. Напряжения имеют локальные максимумы в матрице в окрестности краев нитей, а также в самих нитях.

Рис. 6. Первоначальное микроразрушение тканевого композита при растяжении вдоль нитей (*a*) и поле распределения компоненты тензора напряжений $\sigma_{11}^{(a)}(\xi_k)$, МПа в ЯП, соответствующее задаче L₁₁ (*б*)

На рисунке 7 показаны последовательные стадии распространения микроразрушения в тканевом композите при растяжении, соответствующие разным значениям напряжения $\overline{\sigma}_{11}(t)$, увеличивающегося со временем. Первоначальное микроразрушение в нитях возникает из-за их частичного разрушения (растрескивается матрица без разрушения моноволокон). Затем в месте наибольшего искривления нитей появляется зона разрушения в матрице, ориентированная перпендикулярно направлению растяжения. С ростом растягивающего напряжения микроразрушение из этой зоны матрицы распространяется на края двух нитей, ориентированных в направлении действия нагрузки. После этого обе нити частично разрушаются по всей длине в пределах ЯП, а также возникает поперечное разрушение матрицы вследствие появления разрушенных зон на поверхности раздела нитей и матрицы. И, наконец, при дальнейшем увеличении напряжения происходит распространение зоны разрушения от одной грани ЯП до ее противоположной грани, что в модели трактуется как полное разрушение композита.

Рис. 7. Стадии распространения микроразрушения в тканевом композите при растяжении вдоль одного из направлений укладки нитей (показаны области разрушения в разные моменты времени)

На рисунке 8 показаны эффективные диаграммы деформирования композита $\overline{\sigma}_{11}(\overline{\epsilon}_{11})$ при одноосном растяжении, рассчитанные для различных КЭ-сеток. Точки на диаграммах отмечают появление первоначального разрушения композита, которому соответствуют значения напряжения $\overline{\sigma}_{11}(t^*)$, а также полное разрушение при напряжениях $\overline{\sigma}_{11}(t^{**})$. Различие между $\overline{\sigma}_{11}(t^*)$ и $\overline{\sigma}_{11}(t^{**})$ составляет приблизительно 10–15%. С измельчением сетки $\overline{\sigma}_{11}(t^*)$ монотонно уменьшается от 212 до 190 МПа, а $\overline{\sigma}_{11}(t^{**})$ ведет себя немонотонно, но остается в относительно узком диапазоне: от 237 до 221 МПа. Несмотря на то, что данные по числу рассмотренных сеток, будучи ограниченными, формально не дают оснований говорить о сходимости предельных значений $\overline{\sigma}_{11}(t^*)$ и $\overline{\sigma}_{11}(t^*)$, однако то обстоятельство, что увеличение размера сетки (то есть числа КЭ) более чем в 25 раз приводит к изменению пределов прочности лишь на 7–10%, делает обоснованным вывод о правомерности применения разработанного метода к численному исследованию разрушения тканевых композитов.

Рис. 8. Диаграммы деформирования тканевого углепластика, рассчитанные с использованием трёх видов КЭ-сеток: сетки 1 (цифра 1), сетки 2 (2), сетки 3 (3); кружками показаны точки первоначального разрушения, квадратиками – точки полного разрушения композита

Следует отметить, что описанный сценарий микроразрушения тканевого композита зависит главным образом от сочетания упруго-прочностных характеристик матрицы и моноволокон, а также от геометрии расположения нитей в композите. При этом тип сетки практически не влияет на параметры разрушения. Так, линейно-упругие участки диаграмм деформирования (см. Рис. 8), как и весь комплекс эффективных упругих модулей композита \overline{C}_{ijpq} , несущественно (всего на 2-3%) изменяются с измельчением сетки. Ввиду того, что непосредственное экспериментальное исследование процесса микроразрушения тканевых композитов затруднено, поскольку оно происходит в объеме материала и недоступно для визуального обнаружения, численное моделирование микроразрушения является практически единственным инструментом для изучения особенностей геометрии микроразрушения композитов. В этом смысле разработанный метод компьютерного моделирования процессов микроразрушения может быть полезным при создании и внедрении в технику новых композиционных материалов со сложными структурами.

10. Выводы

Разработана математическая модель микроразрушения тканевых композиционных материалов, основанная на использовании метода асимптотического осреднения и конечно-элементного метода решения локальных задач на ячейке периодичности композита. Показано, что модель позволяет проводить численные исследования процессов микроразрушения тканевых композитов и может служить в качестве инструмента при изучении этих процессов и проектировании композиционных материалов с заранее заданными свойствами.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (соглашения № 14.В37.21.0448, 14.В37.21.1869, госконтракт № 14.514.11.4052) и грантов Президента РФ (МК-6421-2012-9, МК-765.2012.8, МК-6573.2013.3).

Литература

- 1. *Тарнопольский Ю.М., Жигун И.Г., Поляков В.А.* Пространственно-армированные композиционные материалы: Справочник М.: Машиностроение, 1987. 224 с.
- 2. Тканые конструкционные композиты / Под ред. Ц.-В. Чоу и Ф.К. Ко. М.: Мир, 1991. 432 с.
- 3. *Dimitrienko Yu.I.* Modelling of mechanical properties of composite materials at high temperatures. Part 3. Textile composites // Appl. Compos. Mater. 1998. V. 5, N. 4. P. 257-272. DOI
- 4. Димитриенко Ю.И. Механика композиционных материалов при высоких температурах. М.: Машиностроение, 1997. 368 с.
- 5. Диксит А., Мали Х.С. Обзор способов моделирования текстильно-тканевых композитов для прогнозирования их механических свойств // Механика композитных материалов. 2013. Т. 49, № 1. С. 3-30.
- 6. *Cao J., Akkerman R., Boisse P. et al.* Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results // Compos. Part A-Appl. S. 2008. V. 39, N. 6. P. 1037-1053. DOI
- Cox B.N., Flanagan G. Handbook of analytical methods for textile composites // NASA Contractor Report 4750. 1997. 161 p. (URL: http://www.butecom.com/docs/kutuphane/Textile_Composites.pdf).
- 8. Вильдеман В.Э., Соколкин Ю.В., Ташкинов А.А. Механика неупругого деформирования и разрушения композиционных материалов. М.: Наука. Физматлит, 1997. 288 с.
- Vanaerschot A., Cox B.N., Lomov S.V., Vandepitte D. Mechanical property evaluation of polymer textile composites by multi-scale modelling based on internal geometry variability // Proceedings of ISMA2012-USD2012. – P. 5043-5054. (URL: http://www.isma-isaac.be/publications/PMA_MOD_publications/ISMA2012/isma2012_0747.pdf).
- 10. Lomov S.V., Verpoest I., Cichosz J. et al. Meso-level textile composites simulations: Open data exchange and scripting // J. Compos. Mater. – 2013. – V. 20. DOI
- 11. Abdiwi F., Harrison P., Koyama I. et al. Characterising and modelling variability of tow orientation in engineering fabrics and textile composites // Compos. Sci. Technol. 2012. V. 72, N. 9. P. 1034-1041. DOI
- 12. Blinzler B.J., Goldberg R.K., Binienda W.K. Macroscale independently homogenized subcells for modeling braided composites // AIAA J. – 2012. – V. 50, N. 9. – P. 1873-1884. DOI
- Nali P., Carrera E. A numerical assessment on two-dimensional failure criteria for composite layered structures // Compos. Part B-Eng. – 2012. – V. 43, N. 2. – P. 280-289. DOI
- 14. Hage Ch.E., Younès R., Aboura Z. et al. Analytical and numerical modeling of mechanical properties of orthogonal 3D CFRP // Compos. Sci. Technol. 2009. V. 69, N. 1. P. 111-116. DOI
- 15. Němeček J., Králík V., Vondřejc J. Micromechanical analysis of heterogeneous structural materials // Cement Concrete Comp. 2013. V. 36, N. 1. P. 85-92. DOI
- 16. Burks B., Middleton J., Kumosa M. Micromechanics modeling of fatigue failure mechanisms in a hybrid polymer matrix composite // Compos. Sci. Technol. 2012. V. 72, N. 15. P. 1863-1869. DOI
- 17. Abe D., Bacarreza O., Aliabadi M.H. Micromechanical modeling for the evaluation of elastic moduli of woven composites // Key Eng. Mat. – 2012. – V. 525-526. – P. 73-76. DOI
- Novák J. Kaczmarczyk Ł., Grassl P. et al. A micromechanics-enhanced finite element formulation for modeling heterogeneous materials // Comput. Method. Appl. M. – 2012. – V. 201-204. – P. 53-64. DOI
- 19. *Tran T.D., Kelly D., Prusty B.G. et al.* Micromechanical modeling for onset of distortional matrix damage of fiber reinforced composite materials // Compos. Struct. 2012. V. 94, N. 2. P. 745-757. DOI
- Karkkainen R.L., Tzeng J.T. Micromechanical strength modeling and investigation of stitch density effects on 3D orthogonal composites // J. Compos. Mater. 2009. V. 43, N. 25. P. 3125-3142. DOI
- 21. *Hettich T.*, *Hund A.*, *Ramm E.* Modeling of failure in composites by X-FEM and level sets within a multiscale framework // Comput. Method. Appl. M. – 2008. – V. 197, N. 5. – P. 414-424. DOI
- 22. Buchanan D.L., Gosse J.H., Wollschlager J.A. et al. Micromechanical enhancement of the macroscopic strain state for advanced composite materials // Compos. Sci. Technol. 2009. V. 69, N. 11-12. P. 1974-1978. DOI
- 23. Li L.Y., Wen P.H., Aliabadi M.H. Meshfree modeling and homogenization of 3D orthogonal woven composites // Compos. Sci. Technol. – 2011. – V. 71, N. 15. – P. 1777-1788. DOI
- 24. Ильиных А.В., Вильдеман В.Э. Моделирование структуры и процессов разрушения зернистых композитов // Вычисл. мех. сплош. сред. 2012. Т. 5, № 4. С. 443-451. DOI
- 25. *Tashkinov M., Wildemann V., Mikhailova N.* Method of successive approximations in stochastic elastic boundary value problem for structurally heterogenous materials // Comp. Mater. Sci. 2012. V. 52, N. 1. P. 101-106. DOI

- 26. Макарова Е.Ю., Соколкин Ю.В., Чекалкин А.А. Структурно-феноменологические модели прогнозирования упругих свойств высокопористых композитов // Вестн. Сам. Гос. техн. ун-та. Сер.: Физ.-мат. науки. 2010. № 5(21). С. 276-279.
- 27. Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических средах. М.: Наука, 1984. 352 с.
- 28. Победря Б.Е. Механика композиционных материалов. М.: Изд-во МГУ, 1984. 336 с.
- 29. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М.: Мир, 1984. 472 с.
- 30. Бардзокас Д.И., Зобнин А.И. Математическое моделирование физических процессов в композиционных материалах периодической структуры. М.: Эдиториал УРСС, 2003. 376 с.
- Dimitrienko Y.I., Sokolov A.P. Elastic properties of composite materials // Mathematical Models and Computer Simulations. 2010. – V. 2, N. 1. – P. 116-130. DOI
- 32. Димитриенко Ю.И., Соколов А.П. Разработка автоматизированной технологии вычисления эффективных упругих характеристик композитов методом асимптотического осреднения // Вестник МГТУ им. Н.Э. Баумана. Серия: Естественные науки. 2008. № 2. С. 56-67.
- 33. Димитриенко Ю.И., Соколов А.П. Система автоматизированного прогнозирования свойств композиционных материалов // Информационные технологии. – 2008. – № 8. – С. 31-38.
- 34. Димитриенко Ю.И., Соколов А.П. Многомасштабное моделирование упругих композиционных материалов // Матем. моделирование. 2012. Т. 24, № 5. С. 3-20.
- 35. Димитриенко Ю.И., Дубровина А.Ю., Соколов А.П. Моделирование усталостных характеристик композиционных материалов на основе метода асимптотического осреднения и «химического» критерия длительной прочности // Вестник МГТУ им. Н.Э. Баумана. Серия: Естественные науки. 2011. SPEC. С. 34-49.
- 36. Димитриенко Ю.И., Соколов А.П. Численное моделирование композиционных материалов с многоуровневой структурой // Известия РАН. Серия физическая. 2011. Т. 75, № 11. С. 1549-1554.
- 37. Димитриенко Ю.И., Морозов А.Н., Соколов А.П., Ничеговский Е.С. Моделирование эффективных пьезоэлектроупругих композиционных материалов // Вестник МГТУ им. Н.Э. Баумана. Серия: Естественные науки. 2010. № 3. С. 86-96.
- 38. Димитриенко Ю.И., Ничеговский Е.С. Численное моделирование магнитных свойств композиционных материалов // Вестник МГТУ им. Н.Э. Баумана. Серия: Естественные науки. – 2010. – № 1. – С. 3-12.
- 39. *Димитриенко Ю.И*. Механика сплошной среды: Учебн. пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2013. Т. 4. Основы механики твердых сред. 624 с.
- 40. Писаренко Г.С., Лебедев А.А. Деформирование и прочность материалов при сложном напряженном состоянии. Киев: Наукова думка. – 1976. – 416 с.
- 41. Димитриенко Ю.И. Механика сплошной среды: Учебн. пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2011. Т. 1. Тензорный анализ. – 464 с.
- 42. Димитриенко Ю.И. Нелинейная механика сплошной среды. М.: Физматлит, 2009. 624 с.

References

- Tarnopol'skii Iu.M., Zhigun I.G., Poliakov V.A. Prostranstvenno-armirovannye kompozitsionnye materialy: Spravochnik M.: Mashinostroenie, 1987. – 224 s.
- 2. Tkanye konstruktsionnye kompozity / Pod red. Ts.-V. Chou i F.K. Ko. M.: Mir, 1991. 432 s.
- 3. *Dimitrienko Yu.I.* Modelling of mechanical properties of composite materials at high temperatures. Part 3. Textile composites // Appl. Compos. Mater. 1998. V. 5, N. 4. P. 257-272. DOI
- 4. Dimitrienko Y.I. Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh. M.: Mashinostroenie, 1997. 368 s.
- 5. *Diksit A., Mali Kh.S.* Obzor sposobov modelirovaniia tekstil'no-tkanevykh kompozitov dlia prognozirovaniia ikh mekhanicheskikh svoistv // Mekhanika kompozitnykh materialov. 2013. T. 49, N. 1. S. 3-30.
- Cao J., Akkerman R., Boisse P. et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results // Compos. Part A-Appl. S. – 2008. – V. 39, N. 6. – P. 1037-1053. DOI
- Cox B.N., Flanagan G. Handbook of analytical methods for textile composites // NASA Contractor Report 4750. 1997. 161 p. (URL: http://www.butecom.com/docs/kutuphane/Textile_Composites.pdf).
- 8. *Vil'deman V.E., Sokolkin Iu.V., Tashkinov A.A.* Mekhanika neuprugogo deformirovaniia i razrusheniia kompozitsionnykh materialov. M.: Nauka. Fizmatlit, 1997. 288 s.
- Vanaerschot A., Cox B.N., Lomov S.V., Vandepitte D. Mechanical property evaluation of polymer textile composites by multi-scale modelling based on internal geometry variability // Proceedings of ISMA2012-USD2012. – P. 5043-5054. (URL: http://www.isma-isaac.be/publications/PMA_MOD_publications/ISMA2012/isma2012_0747.pdf).
- Lomov S.V., Verpoest I., Cichosz J. et al. Meso-level textile composites simulations: Open data exchange and scripting // J. Compos. Mater. – 2013. – V. 20. DOI
- 11. Abdiwi F., Harrison P., Koyama I. et al. Characterising and modelling variability of tow orientation in engineering fabrics and textile composites // Compos. Sci. Technol. 2012. V. 72, N. 9. P. 1034-1041. DOI
- 12. Blinzler B.J., Goldberg R.K., Binienda W.K. Macroscale independently homogenized subcells for modeling braided composites // AIAA J. – 2012. – V. 50, N. 9. – P. 1873-1884. DOI
- 13. *Nali P., Carrera E.* A numerical assessment on two-dimensional failure criteria for composite layered structures // Compos. Part B-Eng. 2012. V. 43, N. 2. P. 280-289. DOI
- 14. Hage Ch.E., Younès R., Aboura Z. et al. Analytical and numerical modeling of mechanical properties of orthogonal 3D CFRP // Compos. Sci. Technol. – 2009. – V. 69, N. 1. – P. 111-116. DOI
- Němeček J., Králík V., Vondřejc J. Micromechanical analysis of heterogeneous structural materials // Cement Concrete Comp. – 2013. – V. 36, N. 1. – P. 85-92. DOI
- 16. Burks B., Middleton J., Kumosa M. Micromechanics modeling of fatigue failure mechanisms in a hybrid polymer matrix composite // Compos. Sci. Technol. 2012. V. 72, N. 15. P. 1863-1869. DOI

- 17. Abe D., Bacarreza O., Aliabadi M.H. Micromechanical modeling for the evaluation of elastic moduli of woven composites // Key Eng. Mat. – 2012. – V. 525-526. – P. 73-76. DOI
- 18. Novák J. Kaczmarczyk L., Grassl P. et al. A micromechanics-enhanced finite element formulation for modeling heterogeneous materials // Comput. Method. Appl. M. 2012. V. 201-204. P. 53-64. DOI
- 19. *Tran T.D., Kelly D., Prusty B.G. et al.* Micromechanical modeling for onset of distortional matrix damage of fiber reinforced composite materials // Compos. Struct. 2012. V. 94, N. 2. P. 745-757. DOI
- Karkkainen R.L., Tzeng J.T. Micromechanical strength modeling and investigation of stitch density effects on 3D orthogonal composites // J. Compos. Mater. 2009. V. 43, N. 25. P. 3125-3142. DOI
- 21. *Hettich T.*, *Hund A.*, *Ramm E.* Modeling of failure in composites by X-FEM and level sets within a multiscale framework // Comput. Method. Appl. M. 2008. V. 197, N. 5. P. 414-424. DOI
- 22. Buchanan D.L., Gosse J.H., Wollschlager J.A. et al. Micromechanical enhancement of the macroscopic strain state for advanced composite materials // Compos. Sci. Technol. 2009. V. 69, N. 11-12. P. 1974-1978. DOI
- 23. *Li L.Y., Wen P.H., Aliabadi M.H.* Meshfree modeling and homogenization of 3D orthogonal woven composites // Compos. Sci. Technol. 2011. V. 71, N. 15. P. 1777-1788. DOI
- 24. Ильиных А.В., Вильдеман В.Э. Моделирование структуры и процессов разрушения зернистых композитов // Вычисл. мех. сплош. сред. 2012. Т. 5, № 4. С. 443-451. DOI
- 25. *Tashkinov M., Wildemann V., Mikhailova N.* Method of successive approximations in stochastic elastic boundary value problem for structurally heterogenous materials // Comp. Mater. Sci. 2012. V. 52, N. 1. P. 101-106. DOI
- 26. *Makarova E.Iu., Sokolkin Iu.V., Chekalkin A.A.* Strukturno-fenomenologicheskie modeli prognozirovaniia uprugikh svoistv vysokoporistykh kompozitov // Vestn. Sam. Gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki. 2010. N. 5(21). S. 276-279.
- 27. Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh. M.: Nauka, 1984. 352 c.
- 28. Pobedria B.E. Mekhanika kompozitsionnykh materialov. M.: Izd-vo MGU, 1984. 336 s.
- 29. Sanches-Palensiia E. Neodnorodnye sredy i teoriia kolebanii. M.: Mir, 1984. 472 s.
- 30. Bardzokas D.I., Zobnin A.I. Matematicheskoe modelirovanie fizicheskikh protsessov v kompozitsionnykh materialakh periodicheskoi struktury. M.: Editorial URSS, 2003. 376 c.
- 31. Dimitrienko Y.I., Sokolov A.P. Elastic properties of composite materials // Mathematical Models and Computer Simulations. 2010. – V. 2, N. 1. – P. 116-130. DOI
- 32. *Dimitrienko Y.I., Sokolov A.P.* Razrabotka avtomatizirovannoi tekhnologii vychisleniia effektivnykh uprugikh kharakteristik kompozitov metodom asimptoticheskogo osredneniia // Vestnik MGTU im. N.E. Baumana. Seriia: Estestvennye nauki. 2008. N. 2. S. 56-67.
- 33. Dimitrienko Y.I., Sokolov A.P. Sistema avtomatizirovannogo prognozirovaniia svoistv kompozitsionnykh materialov // Informatsionnye tekhnologii. – 2008. – N. 8. – S. 31-38.
- 34. *Dimitrienko Y.I., Sokolov A.P.* Mnogomasshtabnoe modelirovanie uprugikh kompozitsionnykh materialov // Matem. modelirovanie. 2012. T. 24, N. 5. S. 3-20.
- 35. Dimitrienko Y.I., Dubrovina A.Iu., Sokolov A.P. Modelirovanie ustalostnykh kharakteristik kompozitsionnykh materialov na osnove metoda asimptoticheskogo osredneniia i «khimicheskogo» kriteriia dlitel'noi prochnosti // Vestnik MGTU im. N.E. Baumana. Seriia: Estestvennye nauki. 2011. SPEC. S. 34-49.
- 36. Dimitrienko Y.I., Sokolov A.P. Chislennoe modelirovanie kompozitsionnykh materialov s mnogourovnevoi strukturoi // Izvestiia RAN. Seriia fizicheskaia. – 2011. – T. 75, N. 11. – S. 1549-1554.
- Dimitrienko Y.I., Morozov A.N., Sokolov A.P., Nichegovskii E.S. Modelirovanie effektivnykh p'ezoelektrouprugikh kompozitsionnykh materialov // Vestnik MGTU im. N.E. Baumana. Seriia: Estestvennye nauki. – 2010. – N. 3. – S. 86-96.
- Dimitrienko Y.I., Nichegovskii E.S. Chislennoe modelirovanie magnitnykh svoistv kompozitsionnykh materialov // Vestnik MGTU im. N.E. Baumana. Seriia: Estestvennye nauki. – 2010. – N. 1. – S. 3-12.
- 39. *Dimitrienko Y.I.* Mekhanika sploshnoi sredy: Uchebn. posobie. M.: Izd-vo MGTU im. N.E. Baumana, 2013. T. 4. Osnovy mekhaniki tverdykh sred. 624 s.
- 40. *Pisarenko G.S., Lebedev A.A.* Deformirovanie i prochnosť materialov pri slozhnom napriazhennom sostoianii. Kiev: Naukova dumka. 1976. 416 s.
- 41. Dimitrienko Y.I. Mekhanika sploshnoi sredy: Uchebn. posobie. M.: Izd-vo MGTU im. N.E. Baumana, 2011. T. 1. Tenzornyi analiz. 464 s.
- 42. Dimitrienko Y.I. Nelineinaia mekhanika sploshnoi sredy. M.: Fizmatlit, 2009. 624 s.

Поступила в редакцию 23.05.13; опубликована в электронном виде 27.12.13

Сведения об авторах

Соколов Александр Павлович, кфмн, доц., зам.дир., Научно-образовательный центр «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана; E-mail: alsokolo@bmstu.ru Шпакова Юлия Владимировна, ктн, доц., МГТУ им. Н.Э. Баумана; E-mail: ayulya@yandex.ru

Димитриенко Юрий Иванович, дфмн, проф., дир. (Научно-образовательный центр «Суперкомпьютерное инженерное моделирование и разработка программных комплексов», Московский государственный технический университет им. Н.Э. Баумана (МГТУ им. Н.Э. Баумана), зав.каф., МГТУ им. Н.Э. Баумана, 105005, Москва, ул. 2-я Бауманская, д. 5, стр. 1; E-mail: dimit.bmstu@gmail.com

Сборщиков Сергей Васильевич, асп., МГТУ им. Н.Э. Баумана; E-mail: servasbor@gmail.com