DOI: 10.7242/1999-6691/2013.6.2.28 УДК 532.546, 519.688

О ПОСТРОЕНИИ КОНЕЧНО-РАЗНОСТНОЙ СХЕМЫ РАСЧЁТА ФИЛЬТРАЦИИ ПРИ ОКОЛОКРИТИЧЕСКИХ ТЕРМОДИНАМИЧЕСКИХ УСЛОВИЯХ

А.А. Афанасьев^{1,2}, О.Э. Мельник^{1,2}

Научно-исследовательский институт механики МГУ им. М.В. Ломоносова, Москва, Россия ²ЗАО «Т-Сервисы», Москва, Россия

Исследуется математическая модель трёхфазной неизотермической фильтрации бинарной смеси при до- и закритических термодинамических условиях. Рассматриваются проблемы численного моделирования течений в пористой среде, обусловленные выбором энтальпии в качестве одной из независимых переменных. Предложена аппроксимация конвективных членов, позволяющая непрерывным образом задавать конечно-разностные потоки при околокритических термодинамических условиях. Математическая модель может использоваться в задачах, связанных с подземным захоронением углекислого газа, производством геотермальной энергии и разработкой месторождений углеводородов.

Ключевые слова: численное моделирование, конечно-разностная схема, аппроксимация, пористая среда, многофазная фильтрация, критическая точка

CONSTRUCTION OF FINITE-DIFFERENCE SCHEME FOR SIMULATION OF FLOWS IN POROUS MEDIA UNDER NEAR-CRITICAL THERMODYNAMIC CONDITIONS

A.A. Afanasyev^{1,2} and O.E. Melnik^{1,2}

¹Institute of Mechanics of Moscow State University, Moscow, Russia ²ZAO «T-Services», Moscow, Russia

We investigate the mathematical model of three-phase non-isothermal binary mixture flows in porous media under sub- and supercritical conditions. We analyze the problems of numerical simulation of flows in a porous medium assuming that enthalpy is an independent variable of the model. We propose a continuous finite-difference approximation of convective fluxes under near-critical thermodynamic conditions. The model can be used for numerical simulation of the problems of underground carbon dioxide storage, geothermal energy production and hydrocarbon deposits exploration.

Key words: numeric simulations, finite-difference method, approximation, porous media, multiphase flows, critical point

1. Введение

Неизотермические течения в пористой среде при критических термодинамических условиях возникают при захоронении углекислого газа в недрах Земли [1, 2], производстве геотермальной энергии [2, 3] и разработке месторождений углеводородов [4]. Данные процессы могут сопровождаться фазовыми переходами и трёхфазными фильтрационными течениями, которые существующими математическими моделями не описываются. Например, фильтрация, вызванная подземным захоронением углекислого газа CO_2 , происходит при относительно низких пластовых температурах $0\div100^{\circ}$ С и как до-, так и закритических давлениях (критическое давление $CO_2 - 7,28$ МПа) [1]. В подобных условиях вода, насыщающая породы, всегда находится в жидком состоянии, а CO_2 может присутствовать как в газообразном или сжиженном виде, так и в состоянии закритического флюида. Таким образом, при докритических условиях возможны двухфазные течения с термодинамическими равновесиями типа газ-жидкость (газообразный CO_2 -вода), жидкость-жидкость (жидкий CO_2 -вода) и трёхфазные течения с термодинамическими равновесиями типа жидкость-газ-жидкость (жидкий CO_2 -газообразный CO_2 вода).

При исследовании фильтрации широко применяются численные модели, в которых независимыми переменными являются давление и температура [1, 4, 5]. Недостатки подобных моделей связаны с тем, что, во-первых, они не учитывают некоторые термодинамические равновесия флюидов в пластовых условиях. Например, в задачах захоронения CO₂ использование температуры в качестве одной из переменных ограничивает приложения модели только однофазными и двухфазными течениями. Кроме того, они не могут быть применены при трёхфазных течениях воды и углекислого газа в сжиженном и газообразном состояниях [1]. Во-вторых, выраженные в переменных давление–температура уравнения фильтрации имеют математическую особенность при критических термодинамических условиях [6]. Это приводит к замедлению сходимости алгоритмов расчёта фильтрации при критических термодинамических условиях.

В настоящей работе предлагается новая модель многофазной фильтрации бинарной смеси, в которой отсутствуют отмеченные выше недостатки. Вместо температуры в качестве одной из независимых

переменных выступает энтальпия. Такая замена позволяет исключить особенность уравнений фильтрации при критических условиях [6]. Для заданной энтальпии реальные теплофизические свойства смеси находятся с помощью ускоренного метода расчёта, не содержащего вложенных итерационных процессов [7]. Метод даёт возможность определять трёхфазные термодинамические равновесия смеси, в том числе в упомянутых проблемах захоронения CO₂.

В задачах численного моделирования значительное внимание уделяется развитию новых конечноразностных схем интегрирования уравнений механики сплошной среды [8]. Иногда, как например в [9], необходима разработка специальных итерационных методов и разностных схем, учитывающих специфику модели механики сплошной среды. В настоящей работе исследуются проблемы, возникающие аппроксимации конечно-разностной уравнений фильтрации при околокритических при термодинамических условиях. Показано, что классические аппроксимации конвективных потоков [1, 2] могут быть разрывными в критической точке вещества и, следовательно, могут приводить к замедлению или отсутствию сходимости вычислительного алгоритма. Предложено обобщение аппроксимаций на основе сравнения энтальпий фаз бинарной смеси в ячейках расчётной сетки, что позволяет задавать потоки непрерывным образом.

2. Математическая модель фильтрации

2.1. Законы сохранения

Предположим, что различные компоненты многофазной бинарной смеси формируют не смешивающиеся друг с другом различные фазы. Первая компонента c_1 может расслаиваться на жидкую и газовую фазы (i = 1, 2), а вторая компонента c_2 присутствует в виде отдельной жидкой фазы (i = 3). В данном случае система законов сохранения, описывающих фильтрацию, принимает вид:

$$\frac{\partial}{\partial t} \left(m \sum_{i=1}^{2} \rho_{i} s_{i} \right) + \operatorname{div} \left(\sum_{i=1}^{2} \rho_{i} \mathbf{w}_{i} \right) = 0 , \qquad (1)$$

$$\frac{\partial}{\partial t} (m \rho_3 s_3) + \operatorname{div} (\rho_3 \mathbf{w}_3) = 0, \qquad (2)$$

$$\frac{\partial}{\partial t} \left(m \sum_{i=1}^{3} \rho_i e_i s_i + (1-m) \rho_r e_r \right) + \operatorname{div} \left(\sum_{i=1}^{3} \rho_i h_i \mathbf{w}_i - \lambda_m \operatorname{grad} T \right) = 0.$$
(3)

Здесь: m — пористость породы; s_i — насыщенность; ρ_i — плотность; e_i — внутренняя энергия; h_i — энтальпия; \mathbf{w}_i — скорость фильтрации; $\lambda_m = m \sum_{i=1}^3 s_i \lambda_i + (1-m) \lambda_r$ — эффективный коэффициент теплопроводности среды; T — температура среды. Индекс i обозначает параметры i-й фазы, а индекс r — параметры скелета породы.

Уравнения (1) и (2) есть законы сохранения массы первой (c_1) и второй (c_2) компонент смеси, а уравнение (3) — закон сохранения энергии. Соотношения (1)–(3) дополняются законом фильтрации Дарси:

$$w_i = -K \frac{f_i}{\mu_i} (\operatorname{grad} P - \rho_i \mathbf{g}), \qquad (4)$$

где K — проницаемость породы, f_i — относительная фазовая проницаемость i-й фазы, μ_i — вязкость, P — давление, **g** — ускорение свободного падения.

Для насыщенностей фаз выполняется условие

$$\sum_{i=1}^{3} s_i = 1.$$
 (5)

Согласно (1), (2), (5) насыщенность s_3 характеризует объёмную долю компонент смеси. Действительно, s_3 есть объёмная доля компоненты c_2 , формирующей отдельную фазу i = 3, а $s_1 + s_2 = 1 - s_3$ — объёмная доля компоненты c_1 , присутствующей в двух фазах i = 1, 2. Таким образом, при $s_3 = 0$ в составе смеси содержится только компонента c_1 . При увеличении s_3 доля компоненты c_2 растёт, а доля компоненты c_1 уменьшается. При $s_3 = 1$ состав смеси включает только компоненту c_2 .

2.2. Уравнения состояния

для компоненты c_1 .

Обозначим символом h_m осреднённую по фазам i = 1, 2 удельную энтальпию первой компоненты смеси: $h_m = \sum_{i=1}^{2} \rho_i h_i s_i / \sum_{i=1}^{2} \rho_i s_i$. Предположим, что фильтрация происходит в условиях локального термодинамического равновесия, а критические термодинамические условия могут реализоваться только *P*, МПа

На рисунке представлен характерный вид фазовой диаграммы компоненты c_1 на плоскости переменных давление-энтальпия (P, h_m) [7]. Точка С — критическая точка компоненты $P = P_c$. При низких (или высоких) значениях энтальпии, а значит, и температуры T, которым на рисунке соответствует область I (или II), компонента c_1 находится в однофазном состоянии жидкости (или газа). При *P* < *P_c* линия *LCG* ограничивает область *III* двухфазных состояний. При закритических давлениях $P \ge P_c$ только однофазные состояния возможны компоненты с1, причём между состояниями жидкости и газа нет чёткого разграничения. Линия СО, разделяющая области І и ІІ при закритических условиях, проведена условно. Ниже, без ограничения общности, считается, что фаза i = 1 компоненты c_1 имеет свойства жидкости, а фаза i = 2 — свойства газа. При закритических условиях ($P \ge P_c$) деление на фазы посредством линии СQ также условно.

Области существования *I*, *II*, *III* различных фаз бинарной смеси на фазовой диаграмме компоненты c₁ (CO₂); тонкие линии – изолинии распределения плотности р

Так как различные компоненты между собой не смешиваются, то для установления теплофизических свойств многофазной смеси достаточно определить свойства каждой компоненты. В силу того, что компонента c_1 может находиться при околокритических условиях, её теплофизические свойства будем рассчитывать в рамках метода, основывающегося на замене классических переменных давление–температура (P, T) на переменные давление–энтальпия (P, h). Преимущество переменных (P, h) по сравнению с (P,T) заключается в том, что уравнения фильтрации, представленные в этих переменных, не вырождаются [7]. Для уравнений состояния, описывающих реальные свойства вещества, сделать замену переменных (P, T) на (P, h) явным образом не удаётся, так как для заданных давления P и энтальпии h теплофизические свойства фазы находятся из решения системы нелинейных уравнений. Построить решение данной системы можно только численно, организуя итерационный процесс.

Итерационный способ нахождения свойств существенно замедляет гидродинамическое моделирование, поэтому в рамках используемого здесь метода [7] рассчитываются кубические сплайн-интерполяции для функций

$$\rho(P,h), \quad T(P,h), \quad \mu(P,h), \quad \lambda(P,h), \quad T_f(P);$$
(6)

 T_{f} — температура кипения компоненты c_{1} . При этом до начала гидродинамического моделирования коэффициенты сплайнов (6) достаточно вычислить лишь один раз, чтобы затем многократно применять для ускоренного, безытерационного способа расчёта параметров фаз i = 1, 2.

Если компонента c_1 смеси находится в однофазном состоянии ($s_1 = 0$ или $s_2 = 0$), то энтальпия фазы, содержащей данную компоненту, равняется средней энтальпии h_m ($h_1 = h_m$ или $h_2 = h_m$). И тогда теплофизические свойства фазы определяются с помощью прямой подстановки параметров P и h_m в аргументы сплайн-функций (6). Если же компонента смеси c_1 пребывает в двухфазном состоянии ($s_i > 0$, i = 1, 2), то сначала необходимо найти энтальпии фаз h_i (i = 1, 2), решив уравнения, формулирующие условия термодинамического равновесия в области $III : T(P, h_i) - T_f(P) = 0$ (i = 1, 2), где функции T(P, h)и $T_f(P)$ есть сплайны (6). Затем, подставляя параметры P, h_i в функции (6), рассчитать теплофизические свойства фаз i = 1, 2, а с помощью следующих уравнений $s_1 = \frac{\rho_2(h_m - h_2)(1 - s_3)}{\rho_1(h_1 - h_m) + \rho_2(h_m - h_2)},$ $\rho_1(h_1 - h_m)(1 - s_3)$

 $s_2 = \frac{\rho_1(h_1 - h_m)(1 - s_3)}{\rho_1(h_1 - h_m) + \rho_2(h_m - h_2)}$ — их насыщенности.

Предположим, что компонента c_2 не может находиться при критических условиях, поэтому для определения её свойств обратимся к уравнениям состояния фазы i = 3 в классических переменных (*P*, *T*) [7]:

$$\rho_3(P,T), \quad h_3(P,T), \quad \mu_3(P,T), \quad \lambda_3(P,T).$$
 (7)

Эти соотношения удобнее уравнений состояния в переменных (P, h) (6), так как в (7) для задания функций могут применяться существующие аналитические модели свойств среды, которые формулируются именно в переменных (P, T). Заметим, что аналитических моделей свойств среды в переменных (P, h) не существует. Например, используя модель линейно-сжимаемой среды, можно представить функции (7) в виде: $\rho_3 = \rho_0 (1 + \alpha (P - P_0) - \beta (T - T_0))$, $h_3 = C_3 T$, ρ_0 , α , β , C_3 , μ_3 , $\lambda_3 = \text{const}$. Здесь α — коэффициент сжимаемости, β — коэффициент теплового расширения, C_3 — теплоёмкость фазы i = 3 при P = const, ρ_0 — плотность фазы при давлении P_0 и температуре T_0 .

Для заданных параметров P, ρ_i , h_i фазы бинарной смеси внутренняя энергия e_i , входящая в уравнение (3), находится из соотношения

$$h_i = e_i + P/\rho_i$$
 (i = 1, 2, 3). (8)

Свойства породы, так же, как и свойства фазы i = 3, зададим в переменных (P,T):

$$\rho_r(P,T), e_r(P,T), m(P,T), K(P,T).$$
 (9)

В частном случае функции (9) могут иметь вид $e_r = C_r T$, где C_r — теплоёмкость породы; $\rho_r, m, K = \text{const}$.

В дальнейшем символом E будем обозначать термодинамическое равновесие бинарной смеси, а следующими за ним числами в скобках — фазы с насыщенностью $s_i > 0$, присутствующие в равновесии и законах сохранения (1)–(3) (Табл.). Согласно (5) при $s_i = 1$ имеем однофазное термодинамическое равновесие E(i), в котором присутствует только i-я фаза, а насыщенности двух других фаз равны нулю. Однофазные $s_1 = 1$ (или $s_2 = 1$), $s_3 = 0$ состояния E(1) (или E(2)) жидкости (или газа) компоненты c_1 возможны только для термобарических условий P, h_m , соответствующих области I (или II) (см. рисунок). Однофазные $s_3 = 1$ состояния E(3) жидкой фазы компоненты c_2 возможны при любых термобарических условиях P, h_m .

Таблица. Типы термодинамических равновесий смеси в зависимости от переменных P, h_m , s_3 .

Давление и энтальпия Насыщенность	$(P, h_m) \in I$	$(P, h_m) \in II$	$(P, h_m) \in III$
$s_3 = 0$	Жидкость E(1)	Газ E(2)	Жидкость-газ E(1-2)
$0 < s_3 < 1$	Жидкость-жидкость Е(1-3)	Газ-жидкость Е(2-3)	Жидкость-газ-жидкость $E(1-2-3)$
<i>s</i> ₃ = 1	Жидкость Е(3)		

Если неравенство $0 < s_i < 1$ выполняется для двух фаз, а насыщенность оставшейся фазы равняется нулю, то смесь находится в двухфазном равновесии. При параметрах *P*, h_m , принадлежащих области *III* (или *II*), двухфазное равновесие смеси имеет тип жидкость-газ E(1-2), $s_3 = 0$ (или газ-жидкость E(2-3), $s_3 \in (0,1)$), то есть одна из двух фаз жидкая, а другая газовая. Параметры *P* из области *I* отвечают двухфазному равновесию смеси, имеющему тип жидкость-жидкость E(1-3), $s_3 \in (0,1)$, то есть обе фазы жидкие. В данных случаях E(1-2) есть двухфазное равновесие чистой компоненты c_1 ($s_3 = 0$), а E(1-3) и E(2-3) — двухфазные равновесия бинарной смеси ($s_3 \in (0, 1)$).

При выполнении неравенства $0 < s_i < 1$ для всех фаз i = 1, 2, 3 реализуется трёхфазное термодинамическое равновесие смеси типа жидкость—газ—жидкость E(1-2-3). Данные состояния возможны только при докритических условиях ($P < P_c$), если параметры P, h_m принадлежат области III.

Тип термодинамического равновесия смеси удобно определять с помощью приведённой таблицы.

2.3. Относительные фазовые проницаемости (ОФП)

При однофазной фильтрации E(i) относительная фазовая проницаемость f_i равна единице, а ОФП двух других фаз равны нулю: $f_k = 0$, $k \neq i$.

Пусть в областях двухфазной фильтрации E(1-2) компоненты c_1 функции ОФП задаются соотношениями

$$f_1 = f_1^{(1)}(s_1), \qquad f_2 = f_g^{(1)}(s_1), \qquad f_3 = 0,$$
 (10)

а в областях двухфазной фильтрации E(1-3) и E(2-3) — соотношениями

$$f_1 = f_g^{(2)}(s_3), \qquad f_2 = 0, \qquad f_3 = f_l^{(2)}(s_3).$$
 (11)

Здесь индексы l и g обозначают параметры жидкой и газовой фаз в соответствующем двухфазном течении. В двухкомпонентных течениях E(1-3) и E(2-3) всегда считается, что фаза компоненты c_1 газовая, а фаза компоненты c_2 жидкая. Для течений типа газ-жидкость E(2-3) (или жидкость-жидкость E(1-3)) и течений типа жидкость-газ E(1-2) функции f_l , f_g различны. В частных случаях f_l , f_g имеют линейную связь с насыщенностями s_l :

$$f_l = s_l, \quad f_g = s_g = 1 - s_l.$$
 (12)

Определение ОФП в области трёхфазных течений, как правило, основывается на эмпирических моделях. Согласно распространённому подходу [11] необходимо выполнить интерполяцию кривых ОФП из области двухфазных $s_i > 0$, $s_k = 0$ ($i = 1, 2, 3, i \neq k$) в область трёхфазных $s_i > 0$ (i = 1, 2, 3) течений. При использовании предлагаемой модели для вычисления ОФП необходимо учитывать особенность, которая заключается в том, что фазы i = 1, 2 могут находиться при околокритических условиях. Следовательно, в соответствии с (11), кривые ОФП в области двухфазного течения E(1-3) и E(2-3) должны совпадать хотя бы при околокритических условиях. Действительно, предположим, что давление P стремится к критическому давлению снизу $P \rightarrow P_c -$, а энтальпия h_m равняется критической энтальпии компоненты c_1 (точка C на рисунке). Тогда незначительное изменение энтальпии ($\Delta h_m \rightarrow 0$) может привести к изменению фазового состояния с E(1-3) на E(2-3) или, наоборот, с E(2-3) на E(1-3). Причём при $P \rightarrow P_c$ – различие между фазой i=1 в состоянии E(1-3) и фазой i=2 в состоянии E(2-3) стремится к нулю. Следовательно, здесь отклонение друг от друга кривых ОФП для двухфазных течений E(1-3) и E(2-3) также стремится к нулю. Таким образом, естественным представляется следующий вид функций ОФП для трёхфазных течений:

$$f_1 = f_l^{(1)} \left(\frac{s_1}{s_1 + s_2}\right) f_g^{(2)}(s_3), \qquad f_2 = f_g^{(1)} \left(\frac{s_1}{s_1 + s_2}\right) f_g^{(2)}(s_3), \qquad f_3 = f_l^{(2)}(s_3).$$
(13)

Согласно (10), (11), (13) функции f_i (*i* = 1, 2, 3) оказываются непрерывными, если одна из трёх фаз в течении появляется или исчезает.

2.4. Независимые переменные

Определим полный вектор параметров фильтрации в виде:

$$P, T, h_m, \rho_s, e_s, m, K, \rho_i, e_i, h_i, \mu_i, \lambda_i, s_i, f_i \qquad (i = 1, 2, 3).$$
(14)

Подставляя соотношения (4), (10), (11), (13) в законы сохранения (1)–(3), получим, что для заданного распределения параметров (14) можно вычислить все величины в уравнениях (1)–(3).

В качестве независимых переменных модели (1)–(3) выберем давление P, удельную энтальпию h_m компоненты c_1 и насыщенность s_3 фазы i = 3:

$$P, h_m, s_3.$$
 (15)

Переменные (15) описывают все параметры фильтрации (14). Действительно, используя метод [7], сначала для заданных P, h_m установим число фаз компоненты c_1 , их параметры ρ_i , h_i , s_i (i=1,2)и температуру T. Воспользовавшись сплайнами (6), рассчитаем также коэффициенты вязкости и теплопроводности μ_i , λ_i (i=1,2). Далее, для известных значений P и T вычислим с помощью (7) свойства фазы i=3: ρ_3 , h_3 , μ_3 , λ_3 , а с помощью функций (9) — свойства породы: ρ_s , e_s , m, K. Внутреннюю энергию e_i (i=1,2,3) фаз бинарной смеси найдём из уравнения (8). Для известного числа фаз в равновесии бинарной смеси (Табл.) из соотношений (10), (11), (13) определим относительные фазовые проницаемости f_i (i=1,2,3). Таким образом, законы сохранения (1)–(3), после подстановки в них закона Дарси (4) и уравнений состояния, представляют собой замкнутую систему уравнений относительно переменных (15).

3. Конечно-разностная схема

3.1. Конечно-разностные законы сохранения

Конечно-разностную схему для расчёта фильтрации бинарной смеси сформулируем в рамках метода конечных объёмов. Для каждой ячейки *а* декартовой расчётной сетки выполняются следующие конечно-разностные законы сохранения:

$$\left(\mathbf{R}^{a}-\mathbf{R}_{0}^{a}\right)V^{a}+\Delta t\sum_{b=1}^{N_{a}}\mathbf{Q}_{ab}S_{ab}=\mathbf{0}.$$
(16)

Здесь и далее верхний индекс *a* обозначает параметры в соответствующей ячейке *a*, нижний индекс *ab* — параметры на грани между *a* и *b*, 0 — параметры на предыдущем временном слое. Величина \mathbf{R}^{a} — вектор плотностей в ячейке *a*, V^{a} — геометрический объём ячейки, N_{a} — число ячеек, имеющих общую грань (связанных) с ячейкой *a*, \mathbf{Q}_{ab} — вектор потоков через общую грань между ячейками *a* и *b*, S_{ab} — площадь грани, Δt — шаг по времени. Вектор $\mathbf{R}^{a}(\mathbf{Q}_{ab})$ имеет размерность 3: первая и вторая компоненты вектора есть плотности (потоки) компоненты бинарной смеси c_{1} и c_{2} , а третья компонента — плотность (поток) энергии. В уравнениях (16) сумма берётся по всем ячейкам, связанным с *a*. Предполагается, что положительное значение потока \mathbf{Q}_{ab} соответствует течению из ячейки *a* в ячейку *b*. Соотношения (16) определяют полностью неявную конечно-разностную схему [2, 4].

В соответствии с (1)–(3) плотности \mathbf{R}^{a} и потоки \mathbf{Q}_{ab} представляются в виде:

$$\mathbf{R}^{a} = m^{a} \left(\sum_{\substack{i=1,2\\ s_{3} \rho_{3} \\ \sum_{i=1,2,3} s_{i} \rho_{i} e_{i} } \right)^{a} + (1 - m^{a}) \begin{pmatrix} 0 \\ 0 \\ \rho_{s} e_{s} \end{pmatrix}^{a}; \qquad \mathbf{Q}_{ab} = \begin{pmatrix} Q_{ab}^{(1)} \\ Q_{ab}^{(2)} \\ Q_{ab}^{(3)} \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ \lambda_{ab} \left(T^{b} - T^{a} \right) / d_{ab} \end{pmatrix}.$$
(17)

Здесь d_{ab} — расстояние между центрами ячеек, λ_{ab} — аппроксимация эффективного коэффициента теплопроводности λ_m .

Первый член в правой части \mathbf{Q}_{ab} в соотношении (17) описывает конвективный перенос тепла, а второй — кондуктивный перенос, связанный с теплопроводностью. В дальнейшем считаем, что аппроксимации коэффициентов проницаемости K_{ab} и теплопроводности λ_{ab} для грани между ячейками а и *b* заданы, например, следующими соотношениями [2]: $K_{ab} = 2K^a K^b / (K^a + K^b)$, $\lambda_{ab} = 2\lambda_m^a \lambda_m^b / (\lambda_m^a + \lambda_m^b)$.

Конечно-разностная схема (17) имеет первый порядок аппроксимации, обусловленный нелинейной зависимостью теплофизических свойств бинарной смеси от давления и температуры, фазовыми

переходами, нелинейным видом кривых относительной фазовой проницаемости, а в прикладных расчётах и неоднородным геологическим строением проницаемого резервуара.

3.2. Аппроксимации конвективных потоков при околокритических условиях

Рассмотрим проблемы, возникающие при конечно-разностной аппроксимации конвективных потоков $Q_{ab}^{(i)}$ (*i* = 1, 2, 3) в (17) при околокритических термодинамических условиях. Зафиксируем две связанные ячейки *a* и *b* (в дальнейшем для некоторых параметров на грани между ячейками индекс *ab* опускается). Как и ранее предполагаем, что положительное значение скорости фильтрации соответствует течению из ячейки *a* в *b*. Каждая фаза *i* = 1, 2, 3 из ячеек $\alpha = a, b$ может давать вклад в поток массы и энергии бинарной смеси через грань. Широко распространённые аппроксимации скоростей фаз w_i^{α} на грани между ячейками представляем в виде [1, 2, 4, 12]:

$$w_i^a = -\frac{K_{ab}}{d_{ab}} \eta_i^a \min\left(\Delta \Phi_i^a, 0\right), \qquad w_i^b = -\frac{K_{ab}}{d_{ab}} \eta_i^b \max\left(\Delta \Phi_i^b, 0\right), \tag{18}$$

где $\eta_i^{\alpha} = \frac{f_i^{\alpha}}{\mu_i^{\alpha}}, \ \Delta \Phi_i^{\alpha} = P^b - P^a - \tilde{\rho}_i^{\alpha}(z^b - z^a)$ (*i* = 1, 2, 3, $\alpha = a, b$). Здесь η_i^{α} — подвижность соответствующей

фазы, z — глубина центра ячейки (направление оси z совпадает с направлением действия силы тяжести), $\tilde{\rho}_i^{\alpha}$ — аппроксимация плотности фазы i из ячейки $\alpha = a, b$ на грани между ячейками. Операции нахождения минимума и максимума в соотношениях (18) соответствуют схеме с разностями против потоков [1, 2, 4, 12].

Согласно (1)–(4) и (18) потоки массы $Q_{ab}^{(j)}$ (j=1,2) компоненты c_j и энергии $Q_{ab}^{(3)}$ из ячейки a в ячейку b записываем в виде:

$$Q_{ab}^{(1)} = \sum_{\substack{\alpha=a,b\\i=1,2}} \rho_i^{\alpha} w_i^{\alpha}, \qquad Q_{ab}^{(2)} = \sum_{\alpha=a,b} \rho_3^{\alpha} w_3^{\alpha}, \qquad Q_{ab}^{(3)} = \sum_{\substack{\alpha=a,b\\i=1,2,3}} \rho_i^{\alpha} h_i^{\alpha} w_i^{\alpha} .$$
(19)

Для аппроксимации плотностей фаз $\tilde{\rho}_{i}^{\alpha}$ на грани часто применяются соотношения вида:

$$\tilde{\rho}_i^{\alpha} = \frac{\rho_i^{\alpha} + \rho_i^{b}}{2}, \qquad (20)$$

$$\tilde{\rho}_i^a = \frac{\rho_i^a s_i^a + \rho_i^b s_i^b}{s_i^a + s_i^b}.$$
(21)

Здесь следует учитывать, что индекс i = 1,2,3 соответствует фазе одного и того же типа (жидкая фаза компоненты c_j (j = 1,2) или газ) в каждой из ячеек a и b. Аппроксимация (20) используется в классических моделях фильтрации, в которых теплофизические свойства среды задаются явным образом [1, 2, 4]. Более сложная аппроксимация (21) применяется в композиционных моделях фильтрации, в которых свойства флюидов рассчитываются итерационными методами, например, с помощью кубического уравнения состояния [5, 7, 13].

В предложенной модели фильтрации бинарной смеси аппроксимация (20) подходит для компоненты c_2 : $\tilde{\rho}_3^{\alpha} = (\rho_3(P^a, T^a) + \rho_3(P^b, T^b))/2$. В данном случае $\tilde{\rho}_3^a = \tilde{\rho}_3^b$, поэтому, согласно (18), в вычислении потоков (19) участвует только одна из двух фаз i = 3 в ячейках $\alpha = a, b$. Относительно компоненты c_1 предложенная модель является композиционной (свойства компоненты c_1 задаются итерационным методом [7]), поэтому аппроксимацию $\tilde{\rho}_i^{\alpha}$ ($i = 1, 2, \alpha = a, b$) удобнее проводить по формуле (21).

Пусть параметрам P^{α} , h_m^{α} ($\alpha = a, b$) на фазовой диаграмме компоненты c_1 соответствуют точка O_{α} в области двухфазных состояний III (см. рисунок). В силу этого $\tilde{\rho}_i^{\alpha}$ вычисляется непосредственно по формуле (21). Пусть при постоянных давлениях P^a , $P^b = \text{const}$ точки O_a , O_b стремятся к точкам L_a , L_b соответственно. Тогда $s_1^{\alpha} \rightarrow 1$, $s_2^{\alpha} \rightarrow 0$ ($\alpha = a, b$) [7]. Если $O_a = L_a$, $O_b = L_b$, то соотношения (21) сводятся к виду: $\tilde{\rho}_1^{\alpha} = (\rho_1^a + \rho_1^b)/2$ ($\alpha = a, b$). Так как насыщенности соответствующих фаз равны нулю ($s_2^{\alpha} = 0$, $\alpha = a, b$), то плотности $\tilde{\rho}_2^{\alpha}$ вычислять не нужно. Таким образом, если термобарические условия в ячейках отвечают однофазным состояниям одинакового типа (жидкости или газу), то аппроксимация (21) преобразуется к виду (20).

Пусть теперь при постоянных давлениях P^a , $P^b = \text{const}$ точка O_a стремится к L_a , а точка O_b к G_b . Тогда $s_1^a \rightarrow 1$, $s_2^a \rightarrow 0$, $s_1^b \rightarrow 0$, $s_2^b \rightarrow 1$. Если $O_a = L_a$ и $O_b = G_b$, то соотношения (21) сводятся к виду: $\tilde{\rho}_1^a = \rho_1^a$, $\tilde{\rho}_2^b = \rho_2^b$. Плотности $\tilde{\rho}_2^a$, $\tilde{\rho}_1^b$ вычислять не нужно, так как насыщенности соответствующих фаз равны нулю ($s_2^a = 0$, $s_1^b = 0$). Следовательно, при термобарических условиях в ячейках и однофазных состояниях различного типа аппроксимация плотности на грани равна плотности соответствующей фазы.

Из вышеизложенного следует, что при $P < P_c$ аппроксимация (21) позволяет непрерывным образом задавать плотности $\tilde{\rho}_i^{\alpha}$ в зависимости от параметров в ячейках. Однако заметим, что в рассмотренных случаях формулы (21) используются при известной информации о типе фазы (жидкость или газ).

Рассмотрим пример, в котором тип фазы, присутствующей в ячейке, не определен (закритический флюид). Пусть параметры P^a , h_m^a согласуются с точкой O_a , а параметры P^b , h_m^b — с точкой $O_b = L_b$. Изменим параметры P^b , h_m^b так, чтобы точка O_b на фазовой диаграмме переместилась по линии $L_b L_1 C_b G_1 G_b$ вокруг критической точки C (см. рисунок). Если выполнится $O_b = L_1$, то в ячейке b компонента c_1 будет находиться в однофазном состоянии жидкости. Следовательно, из соотношений (21) получим:

$$\tilde{\rho}_{1}^{a} = \tilde{\rho}_{1}^{b} = \frac{\rho_{1}^{a} s_{1}^{a} + \rho_{1}^{b}}{s_{1}^{a} + 1}, \qquad \tilde{\rho}_{2}^{a} = \rho_{2}^{a}.$$
(22)

При условии $O_b = G_1$ компонента c_1 будет пребывать в ячейке b в однофазном состоянии газа, и тогда

$$\tilde{\rho}_{1}^{a} = \rho_{1}^{a}, \qquad \tilde{\rho}_{2}^{a} = \tilde{\rho}_{2}^{b} = \frac{\rho_{2}^{a} s_{2}^{a} + \rho_{2}^{b}}{s_{2}^{a} + 1}.$$
(23)

При перемещении O_b по линии $L_1C_bG_1$ не существует непрерывного перехода между аппроксимациями (22) и (23). Это связано с неопределённостью выбора для фазы в ячейке *b* соответствующей ей фазы в ячейке *a*, так как компонента c_1 в ячейке *b* находится в закритических условиях. Двигаясь вместе с точкой O_b по линии $L_1C_bG_1$ от точки L_1 к G_1 , компонента непрерывным образом переходит из жидкого в газообразное состояние, и аппроксимация (21), опирающаяся на информацию об определённом типе однофазного состояния, здесь перестаёт работать. Это представляет проблему для численного решения уравнений фильтрации.

Решить отмеченную проблему можно, если установить соответствие между фазами в различных ячейках, сравнивая значения энтальпий фаз h_i^{α} ($i = 1, 2, \alpha = a, b$). Введём следующую весовую функцию: $W(h) \equiv 1$ при $h \leq h_{\min}$, $W(h) \equiv 0$ при $h \geq h_{\max}$ и монотонно убывает от единицы до нуля в интервале $h \in (h_{\min}, h_{\max})$. Полагаем, что константы h_{\min} , h_{\max} удовлетворяют неравенствам $0 < h_{\min} < h_{\max}$. Для вычисления $\tilde{\rho}_i^{\alpha}$ используем следующую аппроксимацию:

$$\tilde{\rho}_{i}^{a} = \left(\rho_{i}^{a}s_{i}^{a} + \sum_{k=1,2}\rho_{k}^{b}s_{k}^{b}W\left(\left|h_{k}^{b} - h_{i}^{a}\right|\right)\right)\left(s_{i}^{a} + \sum_{k=1,2}s_{k}^{b}W\left(\left|h_{k}^{b} - h_{i}^{a}\right|\right)\right)^{-1},$$

$$\tilde{\rho}_{i}^{b} = \left(\rho_{i}^{b}s_{i}^{b} + \sum_{k=1,2}\rho_{k}^{a}s_{k}^{a}W\left(\left|h_{k}^{a} - h_{i}^{b}\right|\right)\right)\left(s_{i}^{b} + \sum_{k=1,2}s_{k}^{a}W\left(\left|h_{k}^{a} - h_{i}^{b}\right|\right)\right)^{-1}.$$
(24)

При докритических условиях ($P < P_c$) аппроксимации (24) совпадают с (21). Действительно, пусть точки O_a , O_b , соответствующие параметрам в ячейках, располагаются в области двухфазных состояний *III* так, как показано на рисунке. В этом случае параметрам фаз P^{α} , h_i^{α} в ячейке $\alpha = a, b$ отвечают точки L_{α} , G_{α} [7]. Абсциссы точек L_a и L_b (G_a и G_b) находятся близко друг к другу, то есть энтальпии жидких (газовых) фаз в различных ячейках приблизительно равны. Следовательно, выбирая подходящим образом параметры h_{\min} , h_{\max} для рассматриваемых точек O_a , O_b , можно добиться выполнения условий:

$$W\left(\left|h_{1}^{a}-h_{1}^{b}\right|\right)=1, \quad W\left(\left|h_{2}^{a}-h_{1}^{b}\right|\right)=0, \quad W\left(\left|h_{1}^{a}-h_{2}^{b}\right|\right)=0, \quad W\left(\left|h_{2}^{a}-h_{2}^{b}\right|\right)=1.$$
(25)

Подставляя равенства (25) в (24), получаем аппроксимацию (21).

Рассмотрим теперь поведение соотношений (24) при околокритических условиях. Зафиксируем положение точки O_a , а для другой выполним условие $O_b = L_b$. Тогда, согласно (25), справедливы равенства $W(|h_1^a - h_1^b|) = 1$, $W(|h_2^a - h_1^b|) = 0$, и аппроксимации (24) сводятся к (21). Перемещаем точку O_b по линии $L_bL_1C_bG_1G_b$. Вследствие непрерывности весовой функции W(h) соотношения (24) непрерывным образом переходят из аппроксимации (22) при $O_b = L_b$ ($O_b = L_1$) в аппроксимацию (23) при $O_b = G_b$ ($O_b = G_1$), когда выполняются равенства $W(|h_1^a - h_1^b|) = 0$, $W(|h_2^a - h_1^b|) = 1$. Здесь единственная фаза компоненты c_1 в ячейке b непрерывным образом переходит из жидкого (i = 1) в газовое состояние (i = 2), а функции $\tilde{\rho}_i^{\alpha}$ в (24) не имеют разрыва. Таким образом, при околокритических условиях аппроксимация (24), в отличие от (21), задаёт плотности на гранях $\tilde{\rho}_i^{\alpha}$ непрерывным образом и позволяет улучшить сходимость вычислительных алгоритмов при моделировании фильтрации.

Выбор энтальпии h в качестве аргумента весовой функции W не является обязательным. Для определения соответствия между фазами в различных ячейках можно в качестве аргумента использовать другие термодинамические параметры, например, плотность ρ (см. изолинии на рисунке).

3.3. Масштабирование ОФП при критических условиях

Относительные фазовые проницаемости (ОФП) служат интегральными характеристиками фильтрационного течения, зависящими как от свойств смеси, так и от свойств породы. Кривые ОФП на плоскости (s, f) деформируются, если давление, температура и, следовательно, теплофизические свойства смеси и поверхностные свойства гранул породы существенно изменяются. Согласно работе [14] при околокритических условиях относительная проницаемость фазы f_i должна равняться насыщенности этой фазы s_i (12).

Покажем, что если в окрестности критической точки *C* компоненты c_1 функций $f_l^{(1)}$, $f_g^{(1)}$ (см. (10), (13)) не равны (12), то в критической точке потоки (19) имеют особенность, что может привести к замедлению или отсутствию сходимости вычислительного алгоритма. Не ограничивая общности, предположим, что насыщенность фазы i=3 равна нулю ($s_3=0$), тогда кривые ОФП для двухфазного E(1-2) течения компоненты c_1 имеют вид (10). Примем, что параметрам *P*, h_m в выделенной точке пространства **r** на фазовой диаграмме соответствует критическая точка *C* (см. рисунок). Значит, термодинамическое равновесие компоненты c_1 можно рассматривать как однофазное состояние закритического флюида или как вырождение двухфазного состояния. В первом случае ОФП единственной фазы равновесия равняется единице. Во втором случае параметры обеих фаз i=1,2 компоненты c_1 совпадают, поэтому их насыщенности не определяются однозначно: могут быть выбраны любые их значения $0 \le s_i \le 1$ (i=1,2), удовлетворяющие условию $s_1 + s_2 = 1$. Для обеспечения непрерывности потоков (19) необходимо потребовать, чтобы их значения, отвечающие обоим случаям, были одинаковыми. Согласно (1)–(4), этого можно добиться, только если для любого s_l выполняется равенство $f_l^{(1)}$, $f_g^{(1)}$, $f_g^{(1)$

Для того чтобы при докритических условиях ОФП $f_l^{(1)}$, $f_g^{(1)}$ имели заданный для рассматриваемого флюида и породы вид, а при критических условиях $f_l^{(1)}$, $f_g^{(1)}$ были линейными функциями, выполним их масштабирование в окрестности критической точки $C: f_l^{(1)}(s_l) = W_{12}s_l + (1-W_{12})\overline{f}_l^{(1)}(s_l)$, $f_g^{(1)}(s_l) = W_{12}(1-s_l) + (1-W_{12})\overline{f}_g^{(1)}(s_l)$, где параметр $W_{12} = W(|h_2 - h_1|)$, а функции $\overline{f}_l^{(1)}$, $\overline{f}_g^{(1)}$ есть заданные относительные фазовые проницаемости при докритических условиях. При критических условиях величина $|h_2 - h_1|$ мала, поэтому, согласно определению весовой функции W(h), $W_{12} = 1$, а функции $f_l^{(1)}$, $f_g^{(1)}$ ведут себя линейно. При докритических условиях величина $|h_2 - h_1|$ относительно велика, поэтому $W_{12} = 0$, а $f_l^{(1)} = \overline{f}_l^{(1)}$, $f_g^{(1)} = \overline{f}_g^{(1)}$.

4. Заключение

Предложена математическая модель неизотермической фильтрации бинарной смеси. Модель позволяет исследовать многофазные течения смеси при до- и закритических условиях с учётом как двухфазных термодинамических равновесий типа жидкость–газ, жидкость–жидкость, так и трёхфазных равновесий типа жидкость–газ, жидкость–жидкость, так и трёхфазных равновесий типа жидкость–газ-жидкость. Сформулирована полная система уравнений модели в случае, когда одной из независимых переменных является энтальпия.

Исследованы конечно-разностные аппроксимации потоков при околокритических условиях. Показано, что классические аппроксимации могут приводить к замедлению или отсутствию сходимости алгоритмов численного моделирования фильтрации. Для улучшения сходимости предложено обобщение классической аппроксимации, которое основано на введении весовой функции, дающей возможность проводить сравнение параметров фаз в различных ячейках расчётной сетки.

Рассмотрена проблема определения относительных фазовых проницаемостей при околокритических условиях.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (контракт № 07.514.11.4157).

Литература

- Pruess K., Spycher N. ECO2N A fluid property module for the TOUGH2 code for studies of CO₂ storage in saline aquifers // Energ. Convers. Manage. – 2007. – V. 48, N. 6. – P. 1761-1767. <u>DOI</u>
- TOUGH2 User's Guide, Version 2.1: Report (revised) / Lawrence Berkeley National Laboratory: Pruess K., et al. Berkeley, Calif., U.S., 2011. – 214 p. – LBNL-43134.
- Croucher A.E., O'Sullivan M.J. Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal system // Geothermics. – 2008. – V. 37, N. 6. – P. 622-634. DOI
- 4. Aziz K., Settari A. Petroleum Reservoir Simulation. London NY: Applied Science Publishers, 1979. 476 p.
- 5. Coats K.H. An equation of state compositional model // SPE Journal. 1980. V. 20, N. 5. P. 363-376. DOI
- 6. *Афанасьев А.А., Мельник О.Э.* О математическом моделировании многофазной фильтрации при околокритических условиях // Вестн. Моск. ун-та. Сер. 1. 2013. В печати.
- 7. Афанасьев А.А., Мельник О.Э. Об одном методе расчёта теплофизических свойств при до- и закритических условиях // Физ.-хим. кин. в газ. динамике. 2013. Том. 14. (URL: http://www.chemphys.edu.ru/media/files/2013-04-04-001.pdf)
- 8. *Труфанов Н.А*. О направлениях развития вычислительной механики сплошных сред на примере анализа публикаций одного журнала // Вычисл. мех. сплош. сред. 2011. Т. 4, № 4. С. 114-124. <u>DOI</u>
- 9. Гришин А.М., Зинченко В.И., Ефимов К.Н., Якимов А.С. Применение итерационно-интерполяционного метода для решения задач математической физики // Вычисл. мех. сплош. сред. 2008. Т. 1, № 3. С. 57-65. DOI
- 10. Цыпкин Г.Г. Математическая модель фазовых переходов вода-пар в гидротермальных пластах // МЖГ. 1994. № 6. С. 98-105.
- Stone H.L. Estimation of three-phase relative permeability and residual oil data // J. Can. Petrol. Technol. 1973. V. 12, N. 4. – P. 53-61. DOI
- Guide to the revised ground-water flow and heat transport simulator: HYDROTHERM Version 3: Report / U.S. Geological Survey: Kipp K.L., Hsieh P.A., Charlton S.R. U.S. Geological Survey Techniques and Methods, U.S., 2008. 160 p. Report N. 6-A25.
- 13. http://www.slb.com/services/software/reseng/eclipse.aspx (дата обращения: 19.06.2013).
- Schechter D.S., Haynes J.M. Relative permeabilities of a near critical binary fluid // Transport Porous Med. 1992. V. 9, N. 3. – P. 241-260. DOI

Поступила в редакцию 01.04.2013; опубликована в электронном виде 15.07.13

Сведения об авторах

Афанасьев Андрей Александрович, кфмн, внс, Научно-исследовательский институт механики МГУ им. М.В. Ломоносова (МГУ ИМех), вед. инж.-расчетчик ЗАО «Т-Сервисы», 119192, Москва, Мичуринский проспект, д. 1; E-mail: afanasjev@yandex.ru Мельник Олег Эдуардович, дфмн, член-корр. РАН, зав.лаб., МГУ ИМех, научн. рук. центра вычислительной экспертизы ЗАО «Т-Сервисы»; E-mail: Oleg.Melnik@t-services.ru