DOI: 10.7242/1999-6691/2013.6.2.21 УДК 539.374

О ДИНАМИКЕ МИКРОПОРЫ В НЕСЖИМАЕМОЙ ВЯЗКОУПРУГОПЛАСТИЧЕСКОЙ СРЕДЕ В УСЛОВИЯХ АКТИВНОГО НАГРУЖЕНИЯ И ПОСЛЕДУЮЩЕЙ РАЗГРУЗКИ

Л.В. Ковтанюк¹, Е.В. Мурашкин¹, А.А. Роговой²

¹Институт автоматики и процессов управления ДВО РАН, Владивосток, Россия ²Институт механики сплошных сред УрО РАН, Пермь, Россия

В рамках теории больших деформаций приведено решение одномерной краевой задачи определения НДС материала с упругими, вязкими и пластическими свойствами в окрестности одиночного сферического дефекта сплошности при нагрузке и последующей разгрузке. Установлена закономерность продвижения упругопластической границы, приведены расчетные уровни и распределение остаточных напряжений. Указаны условия возникновения повторного пластического течения в процессе разгрузки.

Ключевые слова: упругость, пластичность, вязкость, остаточные напряжения, большие деформации, дефект сплошности

ON THE DYNAMICS OF MICROPORES IN INCOMPRESSIBLE VISCOELASTOPLASTIC MEDIA UNDER ACTIVE LOADING AND SUBSEQUENT UNLOADING

L.V. Kovtanyuk¹, E.V. Murashkin¹ and A.A. Rogovoy²

¹ Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia ²Institute of Continuous Media Mechanics UB RAS, Perm, Russia

In the framework of the theory of large deformations, the solution of one-dimensional boundary-value problem of determining the stressstrain state of the material with elastic, viscous and plastic properties in the vicinity of a single spherical continuity defect under loading and subsequent unloading is obtained. Constitutive relations governing the motion of an elastic-plastic boundary are determined. The level and distribution of residual stresses are calculated. Conditions for the occurrence of a secondary plastic flow during unloading are presented.

Key words: elasticity, plasticity, viscosity, residual stresses, large deformations, continuity defect

1. Введение

Одномерная задача деформирования и течения сплошной среды в окрестности одиночной поры (газонаполненного пузырька, каверны) является классической задачей механики, постановка которой для случая несжимаемой жидкости осуществлена еще Рэлеем [1]. В случае упругопластических сред данная задача также рассматривалась неоднократно [2–4] и уже является достоянием учебников [5, 6]. Полученные решения использовались в многочисленных приложениях.

Много позже экспериментально обнаружен эффект значительного (в несколько раз) повышения длительной прочности металлоизделий при предварительной обработке материала, из которого они затем изготавливаются, высоким гидростатическим давлением [7, 8]. Стальной образец помещался в алюминиевый кожух (контейнер Горелова), закреплялся в нем и помещался в печь. Значительный уровень гидростатического давления достигался за счет разницы в коэффициентах линейного расширения стали (образца) и алюминия (кожуха). Повышение усталостной прочности материала связывалось с залечиванием в нем микродефектов (микротрещин, микропор). Позднее этот эффект всесторонне изучался с предложением иных технологий упрочнения металлоизделий вследствие залечивания микродефектов [9–11].

Очевидно, что залечивание обусловлено накоплением необратимых деформаций в окрестности микродефектов. Эти деформации, с точки зрения феноменологической механики, вызываются диссипативным механизмом деформирования, который проявляется в пластических и вязких свойствах (ползучести) материалов. Необратимые деформации пластичности и ползучести различаются лишь механизмом их накопления. Пренебрежение вязкостью конкретных материалов приводит к приспособляемости одиночного дефекта к циклическому нагружению по типу «нагрузка–разгрузка» [12, 13]. В этом случае размеры дефекта, как и распределение остаточных напряжений в его окрестности, остаются неизменными после каждой разгрузки: никакого залечивания не происходит. Учет же вязкости в условиях пластического течения материала, как было показано авторами ранее [14], приводит к развитию дефекта; его размеры растут с каждой разгрузкой. Таким образом, при моделировании залечивания дефекта необходимо учитывать реологические свойства материалов на стадиях, предваряющих пластическое течение, и при разгрузке. С целью подтверждения возможности этого механизма

уменьшения размеров дефекта в статье рассматривается простейшая задача теории больших вязкоупругопластических деформаций, когда связь между напряжениями и деформациями (скоростями деформаций) описывается простейшей линейной зависимостью. Ясно, что при этом не удастся составить замкнутую модель процесса именно залечивания, но численно-аналитическое решение — единственный путь для получения ответа на главный вопрос: приводит ли данный реологический механизм к уменьшению размеров дефекта после разгрузки. Следует заметить, что современная вычислительная математика, включая численные исследования с применением всех известных пакетов прикладных программ, такой возможности не предоставляет. Тем более что полученное, по существу точное решение имеет самостоятельную ценность.

2. Основные соотношения модели

Для решения задачи динамики сферического дефекта сплошности воспользуемся моделью больших упругопластических деформаций [3, 4], обобщенной на случай учета вязких свойств материалов [5]. В декартовой системе координат уравнения изменения (переноса) компонент тензоров обратимых (e_{ij}) и необратимых (p_{ij}) деформаций в пространственных координатах Эйлера x_m записываются в форме

$$\frac{De_{ij}}{Dt} = \varepsilon_{ij} - \varepsilon_{ij}^{p} - \frac{1}{2} \Big((\varepsilon_{ik} - \varepsilon_{ik}^{p} + z_{ik}) e_{kj} + e_{ik} (\varepsilon_{kj} - \varepsilon_{kj}^{p} - z_{kj}) \Big),$$

$$\frac{Dp_{ij}}{Dt} = \varepsilon_{ij}^{p} - p_{ik} \varepsilon_{kj}^{p} - \varepsilon_{ik}^{p} p_{kj},$$
(1)

где $\frac{Dn_{ij}}{Dt} = \frac{dn_{ij}}{dt} - r_{ik}n_{kj} + n_{ik}r_{kj}, \quad \varepsilon_{ij} = \frac{1}{2}(v_{i,j} + v_{j,i}), \quad r_{ij} = \frac{1}{2}(v_{i,j} - v_{j,i}) + z_{ij}(e_{sk}, \varepsilon_{sk}) = w_{ij} + z_{ij}, \quad v_i = \frac{du_i}{dt} = \frac{\partial u_i}{\partial t} + u_{i,m}v_m,$

 $u_{i,m} = \frac{\partial u_i}{\partial x_m}$. Здесь: u_i , v_j — компоненты векторов перемещений и скоростей точек среды ; ε_{ij}^p (источник в

уравнении изменения тензора пластических деформаций) — компоненты тензора скоростей пластических деформаций; наличие нелинейной составляющей z_{ij} (в работах [3, 4] ее выражение приведено полностью) в компонентах тензора вращений r_{ij} связано с требованием неизменности тензора необратимых деформаций в процессах разгрузки ($\varepsilon_{ij}^{p} = 0$); полагается, что компоненты тензора необратимых деформаций p_{ij} ведут себя так же, как при жестком перемещении тела. Выполнение данного требования и использование законов термодинамики приводят к необходимости использования объективной производной D/Dt, которая в соотношениях (1) записана для компонент произвольного тензора n_{ij} .

Следствием уравнений переноса (1) является следующее представление компонент тензора полных деформаций Альманси d_{ii} через компоненты тензоров e_{ii} и p_{ii} :

$$d_{ij} = e_{ij} + p_{ij} - \frac{1}{2} e_{ik} e_{kj} - e_{ik} p_{kj} - p_{ik} e_{kj} + e_{ik} p_{km} e_{mj}.$$
 (2)

Материал в дальнейшем считаем несжимаемым вязкоупругим, то есть вязкие свойства среды будем учитывать на стадии, предваряющей пластическое течение, или на стадии разгрузки. Примем, что в областях обратимого деформирования справедливы определяющие соотношения

$$\tau_{ij} + \xi_1 \frac{D\tau_{ij}}{Dt} = 2\mu q_{ij} + 2\xi_2 \varepsilon_{ij}, \qquad \tau_{ij} = \sigma_{ij} - \frac{1}{3}\sigma_{kk}\delta_{ij}, \qquad q_{ij} = d_{ij} - \frac{1}{3}d_{kk}\delta_{ij}.$$
(3)

Здесь: ξ_1, ξ_2 — постоянные материала; μ — модуль сдвига; D/Dt — оператор производной Яуманна $\left(\frac{D\tau_{ij}}{Dt} = \frac{d\tau_{ij}}{dt} - w_{ik}\tau_{kj} + w_{ik}\tau_{kj}\right)$. Для областей с накопленными необратимыми деформациями зависимости (3)

перепишутся в форме

$$\tau_{ij} + \xi_1 \frac{D\tau_{ij}}{Dt} = 2\mu l_{ij} + 2\xi_2 \varepsilon_{ij}, \qquad l_{ij} = e_{ij} - \frac{1}{2}e_{is}e_{sj} - \frac{1}{3}e_{kk}\delta_{ij} + \frac{1}{6}e_{sk}e_{ks}\delta_{ij}.$$
(4)

Соотношения (3) являются предельными для выражений (4) при стремлении к нулю необратимых деформаций в (2).

В качестве пластического потенциала далее используется условие пластичности Мизеса

$$\tau_{ij} \tau_{ji} = 8k^2/3,$$
 (5)

где k — предел текучести материала. Скорости необратимых деформаций ε_{ij}^p связаны с напряжениями ассоциированным законом пластического течения: $\varepsilon_{ij}^p = \lambda \partial f / \partial \sigma_{ij}$, $f(\sigma_{ij}, \varepsilon_{ij}^p) = k$, $\lambda > 0$.

3. Постановка задачи. Начальные условия пластического течения

Полагаем, что дефект сплошности представляет собой сферическую микропору радиусом $r = r_0$, а внешнее граничное воздействие p(t) создается на удаленной от дефекта сферической поверхности с первоначальным радиусом R_0 ($R_0 \gg r_0$):

$$\sigma_{rr}\Big|_{r=R} = -p(t). \tag{6}$$

В (6) R = R(t) — радиус внешней сферической поверхности в текущий момент времени, σ_{rr} — радиальная компонента тензора напряжений в сферической системе координат $Or\phi\theta$. Текущую граничную поверхность дефекта сплошности s = s(t) считаем свободной от напряжений

$$\sigma_{rr}\Big|_{r=s} = 0. \tag{7}$$

Таким образом, единственная от личная от нуля компонента вектора перемещений $u = u_r$ на граничных поверхностях r = R(t) и r = s(t) представляется в виде: $u(R(t)) = R(t) - R_0$ и $u(s(t)) = s(t) - r_0$.

Полагаем, что материал деформируется вязкоупруго до достижения функцией p(t) своего порогового значения $p(t_0) = p_0$. Время $t = t_0$ считаем моментом начала пластического течения. Рассмотрим напряженно-деформированное состояние в промежутке времени $0 \le t \le t_0$. Условие несжимаемости материала в случае сферической симметрии, имеющее вид $(1-u')(1-u/r)^2 = 1$, позволяет определить кинематику среды с точностью до неизвестной функции $\varphi(t)$ (или R(t), или s(t)): $u = r - \sqrt[3]{r^3 + \varphi(t)}$, $\varphi(t) = R_0^3 - R^3(t) = r_0^3 - s^3(t)$. Тогда для отличных от нуля компонент тензора деформаций Альманси имеем:

$$d_{rr} = \frac{1}{2} \left(1 - H^{-4/3} \right), \qquad d_{\theta\theta} = d_{\phi\phi} = \frac{1}{2} \left(1 - H^{2/3} \right), \tag{8}$$

где $H = 1 + \frac{\phi}{r^3}$, а компонента скорости точек среды $v = v_r$ запишется как

$$v = v_r = \frac{\partial u}{\partial t} \left(1 - u_{,r} \right)^{-1} = -\frac{\dot{\varphi}(t)}{3r^2}, \qquad \dot{\varphi} = \frac{d\varphi}{dt}.$$
(9)

С учетом кинематических зависимостей (8), (9) из равенств (3) следуют уравнения

$$\begin{aligned} \tau_{rr} + \xi_{1} \bigg(\frac{\partial \tau_{rr}}{\partial t} - \frac{\dot{\phi}}{3r^{2}} \tau_{rr,r} \bigg) &= \frac{2\mu}{3} \Big(H^{2/3} - H^{-4/3} \Big) + \xi_{2} \frac{4\dot{\phi}}{3r^{3}}, \\ \tau_{\theta\theta} + \xi_{1} \bigg(\frac{\partial \tau_{\theta\theta}}{\partial t} - \frac{\dot{\phi}}{3r^{2}} \tau_{\theta\theta,r} \bigg) &= \frac{\mu}{3} \Big(H^{-4/3} - H^{2/3} \Big) - \xi_{2} \frac{2\dot{\phi}}{3r^{3}}. \end{aligned}$$
(10)

Разложение величины $H^{2/3} - H^{-4/3}$ в ряд имеет вид:

$$A(H) = H^{2/3} - H^{-4/3} = \sum_{n=1}^{\infty} \frac{A^{(n)}(0)}{n!} \frac{\varphi^n}{r^{3n}}.$$
(11)

Примем для функций $\tau_{rr}(r,t)$ и $\tau_{\theta\theta}(r,t)$ аналогичные представления:

$$\tau_{rr} = \sum_{n=1}^{\infty} \frac{a_n(t)}{n! r^{3n}}, \qquad \tau_{\theta\theta} = \sum_{n=1}^{\infty} \frac{b_n(t)}{n! r^{3n}}, \qquad (12)$$

где $a_n(t)$ и $b_n(t)$ — неизвестные функции. Подстановка выражений (11) и (12) в систему дифференциальных уравнений в частных производных (10) приводит к новой системе:

$$\begin{cases} Q(a_n) - \xi_2 \frac{4\dot{\varphi}}{3r^3} - \frac{2\mu}{3} \sum_{n=1}^{\infty} \frac{A^{(n)}(0)}{n!} \frac{\varphi^n}{r^{3n}} = 0, \\ Q(b_n) + \xi_2 \frac{2\dot{\varphi}}{3r^3} + \frac{\mu}{3} \sum_{n=1}^{\infty} \frac{A^{(n)}(0)}{n!} \frac{\varphi^n}{r^{3n}} = 0, \end{cases}$$
(13)

где $Q(a_n) = \sum_{n=1}^{\infty} \frac{a_n + \xi_1 \dot{a}_n}{n! r^{3n}} + \xi_1 \dot{\phi} \sum_{n=1}^{\infty} \frac{a_n}{(n-1)! r^{3n+3}}.$

Интегрируя уравнение движения среды $\sigma_{rr,r} + 2\frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = -\rho_0 \left(\frac{\ddot{\varphi}(t)}{3r^2} + \frac{2}{9}\frac{\dot{\varphi}^2(t)}{r^5}\right)$ с использованием переменных (12) и граничных условий (6) и (7), получим уравнение

$$\Psi(a_{n}, b_{n}, R, s) + S(\phi, R, s) + p(t) = 0,$$
(14)
$$1 \quad 1 \quad \sum_{k=1}^{n} S(\phi, R, s) = o\left(\ddot{\phi}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} + \frac{1}{2}\dot{\phi}^{2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\right)$$

где $\psi(a_n, b_n, R, s) = 2\sum_{n=1}^{\infty} \frac{a_n - b_n}{3nn!} \left(\frac{1}{R^{3n}} - \frac{1}{s^{3n}} \right), \quad S(\varphi, R, s) = \rho_0 \left(\frac{\ddot{\varphi}}{3} \left(\frac{1}{R} - \frac{1}{s} \right) + \frac{1}{18} \dot{\varphi}^2 \left(\frac{1}{R^4} - \frac{1}{s^4} \right) \right).$

Приравнивая в зависимостях (13) коэффициенты при одинаковых степенях r, вместе с уравнением (14) получим бесконечную рекуррентную систему обыкновенных дифференциальных уравнений относительно функций времени $\phi(t)$, $a_n(t)$ и $b_n(t)$:

$$\dot{a}_{1} = \xi_{1}^{-1} \left(-a_{1} + \frac{4}{3} \xi_{2} \dot{\phi} + \frac{2}{3} \mu A^{(1)}(0) \phi \right),$$

$$\dot{b}_{1} = -\xi_{1}^{-1} \left(b_{1} + \frac{2}{3} \xi_{2} \dot{\phi} + \frac{\mu}{3} A^{(1)}(0) \phi \right),$$

$$\vdots$$

$$\dot{a}_{n} = \xi_{1}^{-1} \left(-a_{n} - \xi_{1} n \left(n - 1 \right) \dot{\phi} a_{n-1} + \frac{2\mu}{3} A^{(n)}(0) \phi^{n} \right),$$

$$\dot{b}_{n} = -\xi_{1}^{-1} \left(b_{n} + \xi_{1} n \left(n - 1 \right) \dot{\phi} b_{n-1} + \frac{\mu}{3} A^{(n)}(0) \phi^{n} \right).$$

(15)

Поскольку деформирование среды начинается из свободного состояния, то начальные условия задачи для этой системы обыкновенных дифференциальных уравнений будут однородными:

$$\varphi(0) = \dot{\varphi}(0) = a_n(0) = b_n(0) = 0.$$
(16)

Переходя в уравнениях (14), (15) к безразмерным переменным

$$\tau = \frac{t}{\xi_{1}}, \quad f(\tau) = \frac{\phi(t)}{R_{0}^{3}}, \quad \tilde{p}(\tau) = \frac{p(t)}{\mu}, \quad \tilde{a}_{n} = \frac{a_{n}}{\mu R_{0}^{3n}}, \quad \tilde{b}_{n} = \frac{b_{n}}{\mu R_{0}^{3n}}, \quad \tilde{r}_{0} = \frac{r_{0}}{R_{0}}, \\ \dot{f} = \frac{\xi_{1}\dot{\phi}}{R_{0}^{3}}, \quad \ddot{f} = \frac{\xi_{1}^{2}\ddot{\phi}}{R_{0}^{3}}, \quad \dot{a}_{n} = \frac{\xi_{1}}{\mu}\frac{\dot{a}_{n}}{R_{0}^{3n}}, \quad \dot{b}_{n} = \frac{\xi_{1}}{\mu}\frac{\dot{b}_{n}}{R_{0}^{3n}}$$
(17)

и ограничиваясь в рядах (12) конечным числом слагаемых, решаем систему (14), (15) с начальными условиями (16).

Решение было получено численно при линейной функции нагружения $\tilde{p}(\tau) = g_0 \tau$ и следующих значениях постоянных: $\xi_0 = \rho_0 R_0^2 / (\mu \xi_1^2) = 1$; $\xi_2 / (\mu \xi_1) = 2,5$; $\tilde{r}_0 = 0,03$; $k/\mu = 0,003$; $g_0 = 10^{-4}$. Расчеты показали, что, несмотря на малый размер микропоры, ряды (12) сходятся довольно быстро, достаточно взять шесть слагаемых. Установленное решение справедливо до момента времени $t = t_0$, в который нагружающее давление p(t) достигает порогового значения $p(t_0) = p_0$. В этот момент на границе дефекта сплошности $r = s(t_0) = s_0$ выполняется условие пластичности (5) в форме

$$\left\|\sigma_{rr} - \sigma_{\theta\theta}\right\|_{r=s_0} = 2k.$$
⁽¹⁸⁾

В новых переменных (12) условие (18) принимает вид:

$$\sum_{n=1}^{\infty} \frac{a_n - b_n}{n! s_0^{3n}} = 2k .$$
⁽¹⁹⁾

Из уравнения (19) определяется радиус s_0 , при котором начинается пластическое течение. При принятых числовых значениях постоянных найденные в момент начала пластического течения величины $\tilde{s}_0 = s_0/R_0 = 0,02997212$ и $\tilde{p}_0 = g_0\tau_0 = 0,004$ служат начальными условиями для дальнейшего деформирования.

4. Пластическое течение

Пусть начиная с момента времени $t = t_0$ нагружающее давление продолжает расти: $p(t) = p_0 + g(t)$, $g(t_0) = 0$, g(t) > 0, $\dot{g}(t) \ge 0$ при $t > t_0$. При $t > t_0$ в направлении от границы микропоры r = s(t) развивается область пластического течения $s(t) \le r \le m(t)$. Неизвестная функция m(t) задает движение границы этой области, в которой области выполняется условие пластичности

$$\left(\sigma_{rr} - \sigma_{\theta\theta}\right)\Big|_{s(t) \le r \le m(t)} = 2k.$$
⁽²⁰⁾

Для определения компонент напряжений уравнение движения проинтегрируем отдельно в области вязкоупругого деформирования $m(t) \le r \le R(t)$ и в области пластического течения $s(t) \le r \le m(t)$. Принимая для компонент девиатора тензора напряжений представление (12) и учитывая условие (6), в области вязкоупругого деформирования найдем

$$\sigma_{rr} = \psi(a_n, b_n, r, R) + S(\varphi, r, R) - p_0 - g(t), \qquad \sigma_{\theta\theta} = \sigma_{rr} - \sum_{n=1}^{\infty} \frac{a_n - b_n}{n! r^{3n}}.$$
(21)

В области пластического течения, используя условия (7) и (20), получим

$$\sigma_{rr} = 4k \ln \frac{s}{r} + S(\varphi, r, s), \qquad \sigma_{\theta\theta} = \sigma_{rr} - 2k .$$
(22)

Из условий непрерывности напряжений (21) и (22) на упругопластической границе r = m(t) следуют уравнения

$$\Psi(a_n, b_n, m, R) + S(\varphi, s, R) - p_0 - g(t) - 4k \ln \frac{s}{m} = 0, \qquad \sum_{n=1}^{\infty} \frac{a_n - b_n}{n! m^{3n}} = 2k .$$
(23)

Дифференцируя второе из соотношений (23) с использованием зависимостей (15) и (21), преобразуем его в обыкновенное дифференциальное уравнение для функции m(t):

$$\dot{m} = \left(\frac{1}{\xi_1} \left(\frac{3\xi_2 \dot{\varphi}}{m^3} - 2k + \sum_{n=1}^{\infty} \frac{\mu \varphi^n A^{(n)}(0)}{n! m^{3n}}\right) - \sum_{n=2}^{\infty} \frac{\dot{\varphi}(a_{n-1} - b_{n-1})}{(n-2)! m^{3n}}\right) / \sum_{n=1}^{\infty} \frac{3n(a_n - b_n)}{n! m^{3n+1}}.$$
(24)

Добавляя к первому уравнению (23) и уравнению (24) систему (15), из которой находятся коэффициенты, получим систему обыкновенных дифференциальных уравнений для определения функций $\varphi(t)$, m(t), $a_n(t)$ и $b_n(t)$. Переходя к безразмерным переменным (17) и ограничиваясь конечным числом

Рис. 1. Изменение границы микродефекта

Рис. 3. Распределение напряжений в сферическом слое (сплошная линия — σ_{rr} , пунктирная линия — $\sigma_{\theta\theta}$)

Рис. 2. Изменение упругопластической границы

коэффициентов a_n и b_n , исследуем задачу Коши для данной системы численно. В качестве начальных условий в момент времени $t = t_0$ (при $p = p_0$) в данном случае следует взять значения функций, полученные из решения упругой задачи. Характерные зависимости от времени функций движения поверхности поры и границы области пластического течения приведены на рисунках 1 и 2.

На рисунке 3 показано распределение напряжений при нагружающем давлении $p_1/\mu = \tilde{p}_0 + g_0 \tau_1 = 0.035268$.

Компоненты вязкоупругих деформаций в области обратимого деформирования $m(t) \le r \le R(t)$, согласно (2) и (8), определяются соотношениями

$$e_{rr} = 1 - \sqrt{1 - 2d_{rr}} = 1 - H^{-2/3}, \qquad e_{\theta\theta} = 1 - \sqrt{1 - 2d_{\theta\theta}} = 1 - H^{1/3}, \qquad e_{\theta\theta} = 1 - \frac{1}{\sqrt{1 - e_{rr}}}.$$
 (25)

Заметим, что третье соотношение (25) справедливо и на упругопластической границе r = m(t), а, следовательно, в силу непрерывности компонент деформаций на данной границе, и в области пластического течения.

Для нахождения компонент вязкоупругих деформаций в области пластического течения воспользуемся формулой (4), из которой в рассматриваемом случае следуют зависимости

$$\begin{aligned} \tau_{rr} + \xi_{1} \bigg(\frac{\partial \tau_{rr}}{\partial t} - \frac{\dot{\phi}}{3r^{2}} \tau_{rr,r} \bigg) &= \frac{2\mu}{3} \Big(2e_{rr} - e_{rr}^{2} - 2e_{\theta\theta} + e_{\theta\theta}^{2} \Big) + \xi_{2} \frac{4\dot{\phi}}{3r^{3}}, \\ \tau_{\theta\theta} + \xi_{1} \bigg(\frac{\partial \tau_{\theta\theta}}{\partial t} - \frac{\dot{\phi}}{3r^{2}} \tau_{\theta\theta,r} \bigg) &= \frac{\mu}{3} \Big(2e_{\theta\theta} - e_{\theta\theta}^{2} - 2e_{rr} + e_{rr}^{2} \Big) - \xi_{2} \frac{2\dot{\phi}}{3r^{3}}. \end{aligned}$$
(26)

Вычитая второе уравнение (26) из первого и учитывая, что во всей области пластического течения выполняется условие пластичности Мизеса в форме $\tau_{rr} - \tau_{\theta\theta} = 2k$, для вычисления e_{rr} и $e_{\theta\theta}$ получим уравнение

$$2\mu (e_{rr} - e_{\theta\theta}) - \mu (e_{rr}^2 - e_{\theta\theta}^2) + 2\xi_2 \frac{\dot{\varphi}}{r^3} = 2k.$$
⁽²⁷⁾

Учитывая зависимость (25), из уравнения (27) найдем

$$e_{rr} = 1 + c/6 - 2l_1/c$$
, $e_{\theta\theta} = 1 - (-c/6 + 2l_1/c)^{-1/2}$, (28)

где $c = \left(-108 + 12\sqrt{12} l_1^3 + 81\right)^{1/3}$, $l_1 = 2\left(k/\mu - \xi_2 \dot{\phi}/(\mu r^3)\right)$. По известным полным (8) и вязкоупругим (28) деформациям из (2) вычислим компоненты пластических деформаций

$$p_{rr} = \frac{72d_{rr}c^2 - 36c^2}{2(-c^2 + 12l_1)^2} + \frac{1}{2}, \qquad p_{\theta\theta} = \frac{2d_{\theta\theta}(-c^2 + 12l_1) + c^2 - 12l_1}{12c} + \frac{1}{2}.$$
(29)

Зависимости (28) и (29) описывают поведение составляющих тензора полных деформаций в любой момент времени с помощью предварительно найденной функции $\varphi(t)$. Сведения о распределении полей деформаций необходимы для расчета последующего процесса разгрузки.

5. Процесс разгрузки

Разгрузку материала, определяемую функцией x(t), свяжем с краевым условием

$$\sigma_{rr}\Big|_{r=R(t)} = -p_1 + x(t), \qquad x(t_1) = 0 , \qquad x(t) > 0 \quad \text{при} \quad t > t_1.$$
(30)

В условии (30) p_1 — это давление, достигнутое в процессе нагрузки: $p_1 = p_0 + g(t_1)$. Время $t = t_1$ является моментом окончания процесса нагрузки и начала разгрузки. Если давление p_1 достаточно велико, процесс разгрузки может вызвать повторное пластическое течение [6] вследствие удовлетворения условию (5) теперь уже при растягивающих внутренних усилиях:

$$\sigma_{rr} - \sigma_{\theta\theta} = -2k . \tag{31}$$

Будем считать, что повторное пластическое течение при разгрузке начинается в момент времени $t = t_2$ при значениях $R(t_2) = R_2$, $s(t_2) = s_2$. Таким образом, если на поверхности r = R(t) напряжение σ_{rr} станет равным нулю до момента времени t_2 , то повторного пластического течения при разгрузке не будет. В другом случае, при $t \ge t_2$, задача требует решения.

В промежутке времени $t_1 \le t \le t_2$ материал деформируется вязкоупруго, его кинематическое поведение определяется соотношениями: $u = r - \sqrt{r^3 + \gamma}$, $\gamma = \varphi(t) = R_0^3 - R^3(t) = r_0^3 - s^3(t)$, $m^3(t) = m_1^3 - \gamma + \gamma_1$, $m_1 = m(t_1)$, $\gamma_1 = \varphi(t_1)$. В области $m(t) \le r \le R(t)$, где отсутствуют пластические деформации, после интегрирования уравнения движения среды с использованием условия (30) для радиальной компоненты напряжений получаем

$$\sigma_{rr} = \psi(a_n, b_n, r, R) + S(\gamma, r, R) - p_1 + x(t).$$
(32)

Компонента $\sigma_{\theta\theta}$ вычисляется согласно второму соотношению (21).

В рассматриваемом интервале времени пластическая область не увеличивается, но, в отличие от материальной координаты, пространственная координата границы данной области m(t), вследствие изменения деформированного состояния, изменяется ($m(t) \neq m_1$). Накопленные пластические деформации неизменны в каждой точке среды (при каждом значении материальной координаты), однако при одном и том же значении пространственной координаты они различаются. Пространственная (эйлерова) координата r связана с материальной (лагранжевой) координатой r_k точки среды, фиксированной в момент начала процесса разгрузки, зависимостью

$$r^3 = r_k^3 - \gamma + \gamma_1. \tag{33}$$

С учетом выражения (33) компоненты пластических деформаций (29) в области $s \le r \le m$ вычисляются по формулам

$$p_{rr} = \frac{-18c^2 H_1^{-4/3}}{\left(-c^2 + 12l_1\right)^2} + \frac{1}{2}, \qquad p_{\theta\theta} = -\frac{H_1^{2/3} \left(-c^2 + 12l_1\right)}{12c} + \frac{1}{2}, \qquad H_1 = \frac{r^3 + \gamma}{r^3 + \gamma - \gamma_1}.$$
(34)

По известным полным (8) и пластическим (34) деформациям из (2) определяем компоненты вязкоупругих деформаций

$$e_{rr} = 1 - l_3 l_2^{-2/3}, \qquad e_{\theta\theta} = 1 - \frac{l_2^{1/3}}{\sqrt{l_3}},$$
 (35)

при этом $l_2 = 1 + \frac{\gamma - \gamma_1}{r^3}$, $l_3 = \frac{l_4}{6c}$, $l_4 = -c^2 + 24\left(\frac{k}{\mu} - \frac{\xi_2}{\mu}\frac{\dot{\gamma}_1}{r^3}\right)$. Здесь *с* и l_1 берутся из формулы (28), но с учетом замены $\dot{\phi}$ на $\dot{\gamma}_1$ согласно зависимости (33). Используя (26) и (35), для области $s \le r \le m$

$$\begin{aligned} \tau_{rr} + \xi_{1} \left(\frac{\partial \tau_{rr}}{\partial t} - \frac{\dot{\gamma}}{3r^{2}} \tau_{rr,r} \right) &= \frac{2\mu}{3} \left(\frac{l_{2}^{2} - l_{3}^{3}}{l_{3} l_{2}^{4/3}} \right) + \xi_{2} \left(\frac{4\dot{\gamma}}{3r^{3}} \right), \\ \tau_{\theta\theta} + \xi_{1} \left(\frac{\partial \tau_{\theta\theta}}{\partial t} - \frac{\dot{\gamma}}{3r^{2}} \tau_{\theta\theta,r} \right) &= -\frac{\mu}{3} \left(\frac{l_{2}^{2} - l_{3}^{3}}{l_{3} l_{2}^{4/3}} \right) - \xi_{2} \left(\frac{2\dot{\gamma}}{3r^{3}} \right). \end{aligned}$$
(36)

В силу того, что величина $\dot{\gamma}_1$ мала, можно считать

получим уравнения

$$l_1 = 2\frac{k}{\mu}, \quad l_4 = -c^2 + 24\frac{k}{\mu}.$$
 (37)

Тогда, используя (37), член $(l_2^2 - l_3^3)/(l_3 l_2^{4/3})$ в выражениях (36) можно разложить в ряд по степеням r

$$h(z) = \frac{l_2^2(z) - l_3^3}{l_3 l_2^{4/3}(z)} = \sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} \frac{\left(\gamma - \gamma_1\right)^n}{r^{3n}}.$$
(38)

Представим, как и ранее, компоненты девиатора тензора напряжений в области с накопленными необратимыми деформациями в виде

$$\tau_{rr} = \sum_{n=0}^{\infty} \frac{z_n(t)}{n! r^{3n}}, \qquad \tau_{\theta\theta} = \sum_{n=0}^{\infty} \frac{w_n(t)}{n! r^{3n}}.$$
(39)

Преобразуем соотношения (36) с учетом выражений (38) и (39) и значения Q (13):

$$z_{0} + \xi_{1}\dot{z}_{0} + Q(z_{n}) = \frac{2\mu}{3} \sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} \frac{(\gamma - \gamma_{1})^{n}}{r^{3n}} + \xi_{2} \frac{4\dot{\gamma}}{3r^{3}},$$

$$w_{0} + \xi_{1}\dot{w}_{0} + Q(w_{n}) = -\frac{\mu}{3} \sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} \frac{(\gamma - \gamma_{1})^{n}}{r^{3n}} - \xi_{2} \frac{2\dot{\gamma}}{3r^{3}}.$$
(40)

Заметим, что суммирование в рядах (39) следует вести от нуля, так как в правых частях уравнений (40) есть постоянные (не зависящие от радиуса) слагаемые. Интегрируя уравнение движения с учетом зависимостей (39) и отсутствия напряжений на поверхности дефекта (7), найдем компоненты напряжений в области $s \le r \le m$:

$$\sigma_{rr} = \psi(z_n, w_n, r, s) + S(\gamma, r, s) + 2(z_0 - w_0) \ln \frac{s}{r}, \quad \sigma_{\theta\theta} = \sigma_{rr} - \sum_{n=0}^{\infty} \frac{z_n - w_n}{n! r^{3n}}.$$
(41)

Приравнивание коэффициентов при одинаковых степенях *r* в левой и правой частях выражений (40) приводит к системе обыкновенных дифференциальных уравнений:

$$\dot{z}_{0} = \xi_{1}^{-1} \left(-z_{0} - \frac{2\mu}{3} h(0) \right),$$

$$\dot{w}_{0} = \xi_{1}^{-1} \left(-w_{0} + \frac{\mu}{3} h(0) \right),$$

$$\dot{z}_{1} = \xi_{1}^{-1} \left(-z_{1} - \frac{2\mu}{3} h^{(1)}(0) \left(\gamma - \gamma_{1}\right) + \frac{4}{3} \xi_{2} \dot{\gamma} \right),$$

$$\dot{w}_{1} = \xi_{1}^{-1} \left(-w_{1} + \frac{\mu}{3} h^{(1)}(0) \left(\gamma - \gamma_{1}\right) - \frac{2}{3} \xi_{2} \dot{\gamma} \right),$$

$$\vdots$$

$$\dot{z}_{n} = -\xi_{1}^{-1} \left(z_{n} + \xi_{1} n \left(n - 1 \right) \dot{\gamma} z_{n-1} + \frac{2\mu}{3} \frac{h^{(n)}(0)}{n!} \left(\gamma - \gamma_{1} \right)^{n} \right),$$

$$\dot{w}_{n} = \xi_{1}^{-1} \left(-w_{n} - \xi_{1} n \left(n - 1 \right) \dot{\gamma} w_{n-1} + \frac{\mu}{3} \frac{h^{(n)}(0)}{n!} \left(\gamma - \gamma_{1} \right)^{n} \right).$$

(42)

В результате интегрирования первых двух уравнений (42) найдем, что $z_0 - w_0 = 2k$.

Системы уравнений для коэффициентов a_n , b_n (15) и z_n , w_n (42) необходимо дополнить обыкновенным дифференциальным уравнением, следующим из условия равенства компоненты σ_{rr} (см. формулы (32) и (41)) на упругопластической границе r = m:

$$4k\ln\frac{s}{m} + \varphi(z_n, w_n, m, s) - \varphi(a_n, b_n, m, R) + S(\gamma, R, s) + p_1 - x(t) = 0.$$
(43)

Замкнутая система уравнений (15), (42) и (43) при ограничениях, связанных с конечностью числа слагаемых в рядах (12) и (39), и начальных условиях $\gamma = \gamma_1$, $\dot{\gamma} = \dot{\gamma}_1$, $a_n = a_n(t_1)$, $b_n = b_n(t_1)$, $z_n = z_n(t_1) = 0$, $w_n = w_n(t_1) = 0$ решается, как уже упоминалось, либо до момента времени, когда $\sigma_{rr}|_{r=R(t)} = 0$, либо до $t = t_2$, когда в направлении от границы микропоры $r = s_2$ начнет развиваться область пластического течения. Условие ее возникновения — выполнение равенства (31), в принятых обозначениях запишется как $\sum_{n=0}^{\infty} \frac{z_n - w_n}{n! s_2^{3n}} = -2k$.

Вычисленные значения функций

$$\gamma_2 = \gamma(t_2), \quad \dot{\gamma}_2 = \dot{\gamma}(t_2), \quad a_n(t_2), \quad b_n(t_2), \quad z_n(t_2), \quad w_n(t_2)$$
(44)

становятся начальными условиями для последующего процесса деформирования в условиях (7), (30), когда развивается область повторного пластического течения. Считаем, что такая область образует слой $s(t) \le r \le q(t)$, где q(t) — его внешняя граница.

Уравнение движения среды теперь необходимо проинтегрировать в трех областях: $s \le r \le q$, $q \le r \le m$, $m \le r \le R$. При этом $m \ne m_2 = m(t_2)$, несмотря на то, что пластические деформации в области $q \le r \le m$ неизменны. Пространственная координата границы области пластического течения m определяется как $m^3 = m_2^3 - \gamma + \gamma_2$.

В области $m \le r \le R$ пластические деформации отсутствуют, и напряжения вычисляются по формулам (21), в которых нагружающее усилие $p_0 + g(t)$ следует заменить выражением $p_1 - x(t)$, а функцию

времени $\varphi(t)$ — ее последующим значением $\gamma(t)$. В области $q \le r \le m$, где пластические деформации не изменяются, разность напряжений ($\sigma_{rr} - \sigma_{\theta\theta}$) находится из соотношения (41). Интегрируя уравнение движения при условии равенства компоненты напряжения σ_{rr} на границе r = m, найдем

$$\sigma_{rr} = \psi(a_n, b_n, m, R) + \psi(z_n, w_n, r, m) + S(\gamma, r, R) + 4k \ln \frac{m}{r} - p_1 + x(t),$$

$$\sigma_{\theta\theta} = \sigma_{rr} - \sum_{n=0}^{\infty} \frac{z_n - w_n}{n! r^{3n}}.$$
(45)

В области повторного пластического течения *s* ≤ *r* ≤ *q* в результате интегрирования уравнения движения получим

$$\sigma_{rr} = -4k \ln \frac{s}{r} + S(\gamma, r, s), \qquad \sigma_{\theta\theta} = \sigma_{rr} + 2k.$$
(46)

Условие равенства компоненты напряжения σ_{rr} , вычисляемой согласно (45) и (46) на границе области повторного пластического течения r = q(t), приводит к уравнению

$$\psi(a_n, b_n, m, R) + \psi(z_n, w_n, q, m) + S(\gamma, s, R) + 4k \ln \frac{m}{q} + 4k \ln \frac{s}{q} - p_1 + x(t) = 0.$$
(47)

Исходя из условия пластичности Мизеса и зависимостей (42) находим уравнение движения границы области повторного пластического течения r = q(t):

$$\dot{q} = \frac{\frac{2}{\xi_1} \left(2k + \frac{\xi_2 \dot{\gamma}}{q^3} - \frac{\mu}{2} \sum_{n=1}^{\infty} \frac{h^{(n)}(0)}{n!} \frac{\left(\gamma - \gamma_1\right)^n}{q^{3n}} \right) + \sum_{n=2}^{\infty} \frac{\dot{\gamma} \left(w_{n-1} - z_{n-1}\right)}{(n-2)! q^{3n}}}{\sum_{n=1}^{\infty} \frac{3(z_n - w_n)}{(n-1)! q^{3n+1}}}.$$
(48)

Обыкновенные дифференциальные уравнения (47) и (48) замыкают бесконечную систему дифференциальных уравнений (15) и (42) относительно функций γ , q, a_n , b_n , z_n , w_n .

Решение данной задачи Коши при начальных условиях (44) и конечном числе слагаемых в рядах (12) и (39) найдено численно. Характерное распределение остаточных напряжений в конечный момент разгрузки материала с дефектом в виде сферической поры приведено на рисунке 4.

Рис. 4. Распределение остаточных напряжений (σ_{rr} –сплошная линия, $\sigma_{\theta\theta}$ – пунктирная линия)

Сравнение представленных графических зависимостей с результатами, полученными в рамках модели больших упругопластических деформаций [6], показывает, что учет вязких свойств материалов не приводит к заметным количественным отличиям В процессе активного нагружения образца ни по уровню напряжений, ни по размерам микропоры. Однако в процессе разгрузки с повторным пластическим течением размеры дефекта в вязкоупругопластической среде существенно меньше (в 10 раз) в сравнении с размерами сплошности аналогичного дефекта в идеальной упругопластической среде. При этом заметного снижения уровня остаточных напряжений за счет их релаксации при учете реологических свойств материалов не замечено.

Работа выполнена в рамках Программы совместных фундаментальных исследований УрО РАН, СО РАН, ДВО РАН (проекты УрО РАН № 12-С-1-1015, ДВО РАН № 12-II-СУ-03-002).

Литература

- 1. *Rayleigh O.M.F.R.S. (Lord)* On the pressure developed in a liquid during the collapse of a spherical cavity // Philosophical Magazine, Series 6. 1917. V. 34, N. 200. P. 94-98. <u>DOI</u>
- 2. Галин Л.А. Плоская упруго-пластическая задача // ПММ. 1946. Т. 10, № 3. С. 367-386.
- 3. Шемякин Е.И. Расширение газовой полости в несжимаемой упругопластической среде // ПМТФ. 1961. Т. 2, № 5. С. 111-116.
- 4. *Садовский В.М.* Радиальное расширение сыпучей среды в сферическом и цилиндрическом слоях // ПМТФ. 2009. Т. 50, № 3. – С. 190-196.
- 5. Хилл Р. Математическая теория пластичности. М.: Гостехиздат, 1956. 408 с.
- 6. *Седов Л.И.* Механика сплошной среды. М.: Наука, 1970. Т. 2. 568 с.
- 7. Горелов В.И. Исследование влияний высоких давлений на механические характеристики алюминиевых сплавов // ПМТФ. 1984. –№ 5. –С. 157-158.
- 8. *Горелов В.И., Зорихин В.Н.* Технология упрочнения контейнеров для прессования металлов // Технология двигателестроения. 1984. № 11-12. С. 40-43.
- 9. *Лариков Л.Н.* Залечивание дефектов при механико-термической обработке металлов. Киев: Наукова думка, 1982. 460 с.
- 10. Черемской П.Г., Слезов В.В., Бетехтин В.И. Поры в твердом теле. М.: Энергоатомиздат, 1990. 376 с.
- 11. Бетехтин В.И., Кадомцев А.Г., Амосова О.В. Закономерности залечивания пористости в некоторых кристаллических и аморфных телах // Известия ВУЗов. Черная металлургия. 2003. № 8. С. 65-69.
- 12. Буренин А.А., Ковтанюк Л.В., Полоник М.В. Формирование одномерного поля остаточных напряжений в окрестности цилиндрического дефекта сплошности упругопластической среды // ПММ. 2003. Т. 67, № 2. С. 316-325. DOI
- 13. *Буренин А.А, Быковцев Г.И., Ковтанюк Л.В.* Об одной простой модели для упругопластической среды при конечных деформациях // ДАН. 1996. Т. 347, № 2. С. 199-201.
- 14. *Буренин А.А., Ковтанюк Л.В., Полоник М.В.* Возможность повторного пластического течения при общей разгрузке упругопластической среды // ДАН. 2000. Т. 375, № 6. С. 767-769. <u>DOI</u>
- 15. *Буренин А.А., Ковтанюк Л.В.* Упругие эффекты при интенсивном необратимом деформировании. Владивосток: Из-во ДВГТУ, 2011. 270 с.

Поступила в редакцию 15.11.12; опубликована в электронном виде 15.07.13

Сведения об авторах

Ковтанюк Лариса Валентиновна, дфмн, проф., зав.лаб., Институт автоматики и процессов управления ДВО РАН (ИАПУ ДВО РАН), 690041, Владивосток, ул. Радио, д. 5; E-mail: lk@iacp.dvo.ru

Мурашкин Евгений Валерьевич, кфмн, мнс, ИАПУ ДВО РАН; E-mail: murashkin@iacp.dvo.ru

Роговой Анатолий Алексеевич, дфмн, проф., зам.дир., Институт механики сплошных сред УрО РАН (ИМСС УрО РАН), 614013, Пермь, ул. Академика Королева, д. 1; E-mail: rogovoy@icmm.ru