DOI: 10.7242/1999-6691/2012.5.4.55 УДК 532.517.4: 536.25

ОБ ЭКСПЕРИМЕНТАЛЬНЫХ ТЕСТАХ (БЕНЧМАРКАХ) ДЛЯ ПРОГРАММНЫХ ПАКЕТОВ, ОБЕСПЕЧИВАЮЩИХ РАСЧЕТ ТЕПЛООБМЕННИКОВ В АТОМНОЙ ЭНЕРГЕТИКЕ

М.А. Большухин ¹, А.Ю. Васильев ^{2,3}, А.В. Будников ¹, Д.Н. Патрушев ¹, Р.И. Романов ¹, Д.Н. Свешников ¹, А.Н. Сухановский ², П.Г. Фрик ²

¹ОАО «ОКБМ Африкантов», Нижний Новгород, Россия ²Институт механики сплошных сред УрО РАН, Пермь, Россия ³Пермский государственный национальный исследовательский университет, Пермь, Россия

Обсуждается проблема обеспечения экспериментальным тестовым материалом программ вычислительной гидродинамики, применяемых при расчете теплообменников в атомной энергетике. В качестве эталонной задачи (бенчмарка) предлагается использовать задачу о турбулентной конвекции Рэлея–Бенара в прямоугольной полости размерами $D \times d \times D$ (где один из горизонтальных размеров $d \le D$) для фиксированного числа Рэлея Ra = 4,4·10⁹ и аспектного отношения $\Gamma = d/D = 0,1, 0,2$ и 1. Эксперимент показал, что при таких аспектных отношениях реализуются различные режимы крупномасштабной циркуляции. Выполненные с помощью пакета ANSYS CFX расчеты для двух случаев ($\Gamma = 1$, Ra = 4,4·10⁹ и $\Gamma = 0,1$, Ra = 2,2·10⁹) показали, что пакет позволяет получить результаты, адекватно отображающие как среднее течение, так и пространственное и спектральное распределения турбулентных пульсаций. Долговременные расчеты воспроизводят также динамику крупномасштабной циркуляции, хотя и требуют увеличения времени расчетов для более точного сопоставления характеристик поведения системы.

Ключевые слова: турбулентная конвекция, конвективный теплообмен, CFD пакеты, бенчмарки

EXPERIMENTAL BENCHMARKING OF CFD CODES USED IN SIMULATIONS OF HEAT EXCHANGERS FOR NUCLEAR-POWER APPLICATIONS

M.A.Bolshukhin ¹, A.Yu. Vasiliev ^{2,3}, A.V.Budnikov ¹, D.N. Patrushev ¹, R.I. Romanov ¹, D.N. Sveshnikov ¹, A.N. Sukhanovsky ² and P.G. Frick ²

¹Joint Stock Company "Afrikantov Experimental Design Bureau for Mechanical Engineering", Nigniy Novgorod, Russia ²Institute of Continuous Media Mechanics UB RAS, Perm, Russia ³Perm State National Research University, Perm, Russia

This study is aimed to provide benchmark experimental data for CFD codes used in simulations of heat-exchangers for nuclear-power applications. The experimental results obtained in studying turbulent Raleigh–Benard convection in a rectangular tank with dimensions $D \times d \times D$ (where one of the horizontal dimensions $d \le D$) are proposed as a benchmark. Experiments were carried out for a fixed Raleigh number Ra = 4.4 · 10⁹ and different values of aspect ratio $\Gamma = d/D = 0.1, 0.2$ and 1. It has been found that, for these aspect ratios, the large-scale circulation is characterized by different regimes. Numerical simulations made by ANSYS CFX for two cases ($\Gamma = 1$, Ra = 4.4 · 10⁹ and $\Gamma = 0.1$, Ra = 2.2 · 10⁹) provide relevant results not only for the mean flow but also for the spatial and temporal distribution of turbulent fluctuations. Long-time simulations are able to reproduce the dynamics of large-scale circulation, yet they require a remarkable increase of computation time for accurate comparison of flow characteristics.

Key words: turbulent convection, convective heat exchange, CFD packages, benchmarks

1. Введение

В атомной энергетике актуальной является задача предсказания полей температур в неизотермических потоках. Нестационарные неизотермические течения оказывают заметное влияние на показания датчиков температуры, по которым осуществляется управление атомными реакторными установками. Кроме того, в турбулентных неизотермических потоках возникают пульсации температуры, которые обуславливают дополнительные термоциклические нагрузки на стенки оборудования и в ряде случаев значительно уменьшают ресурс отдельного оборудования и установки в целом. С учетом того, что ко всем ядерным объектам предъявляются требования повышенной надежности и безопасности, недостаточный уровень осведомленности о параметрах неизотермических потоков существенно определяет как величину запасов, закладываемых при проектировании объекта, так и проектные ограничения на этапе эксплуатации объекта. Накладываемые ограничения, в свою очередь, снижают экономичность существующих и вновь проектируемых объектов атомной энергетики

К настоящему времени быстро растущая производительность многопроцессорных вычислительных машин обеспечивает возможность рассчитывать процессы в неизотермических потоках с помощью

программ вычислительной гидродинамики (CFD). Использование этих программ для анализа течения в атомных реакторных установках подтверждается значительным объемом работ, координируемых Международным агентством по атомной энергии (МАГАТЭ) и Организацией экономического сотрудничества и развития в Европе. Эти работы направлены на адаптацию CFD программ к решению проблем атомной энергетики. По мнению экспертов названных организаций (объединенных в рабочую группу CFD4NRS–CFD for nuclear reactor safety), одним из ключевых условий успешного внедрения и применения CFD программ в этой отрасли является создание экспериментальной базы, представительной с точки зрения разработки и обоснования технологии приложения CFD программ к описанию неизотермических потоков. При этом важно подчеркнуть, что выбор эталонной задачи (такие задачи принято называть бенчмарками — benchmarks) и набора характеристик, по которым должен накапливаться экспериментальный материал, не возможен без четкой фиксации того, что, собственно, требуется узнать в ходе проводимых расчетов.

Следует отметить, что описание неадиабатических потоков является относительно новым и еще не до конца освоенным направлением использования CFD программ. А среди класса задач численного моделирования неизотермических потоков наиболее трудными являются задачи естественной или смешанной конвекции, особенно в тех режимах, где возникают устойчивые пульсации температуры и скорости теплоносителя в потоке, что может существенно влиять на ресурс оборудования.

Задача моделирования процессов естественной конвекции (особенно температурных пульсаций) еще более усложняется практическим отсутствием ранее выполненных экспериментальных исследований в этой области. Экспериментальные работы посвящены, в основном, определению интегральных значений коэффициентов теплопередачи, локальные же характеристики потока не измерялись в силу методической сложности постановки эксперимента и анализа полученных данных.

Среди представительных для верификации CFD программ экспериментов, воспроизводящих условия естественной конвекции и наиболее близких к описываемому в настоящей статье, экспертами CFD4NRS рекомендуется эксперимент по исследованию естественной конвекции воздуха внутри прямоугольной полости с заданной разностью температур противоположных вертикальных стенок. В работе [1] выполнены подробные измерения профилей температур в нескольких разнесенных по высоте сечениях экспериментальной модели, и измерения нестационарных температур в трех точках среднего по высоте сечения модели. Эти результаты активно цитируются при верификации CFD программ (несколько десятков ссылок).

Следует отметить, что естественная конвекция в замкнутых полостях является традиционным объектом фундаментальных исследований, притягивающим внимание разнообразием ее динамических режимов [2, 3]. Накопленный в этой области науки опыт может быть использован для выбора канонической (по геометрии полости и граничным условиям) задачи, обладающей богатым спектром режимов, возникающих в интересном для объектов атомной энергетики диапазоне параметров, и обеспеченной достаточным объемом экспериментального материала, который может послужить базой для верификации и сертификации СFD программ.

В данной работе в качестве такой эталонной задачи (бенчмарка) предлагается рассмотреть конвекцию воды в подогреваемой снизу прямоугольной полости размерами $D \times d \times D$; вертикальное сечение которой в плоскости xO_z представляет собой квадрат, а толщина полости d варьируется в направлении y, но не превышает величины D. Недавние эксперименты показали [4], что изменение аспектного отношения $\Gamma = d/D$ принципиальным образом меняет характер эволюции крупномасштабной циркуляции жидкости на фоне развитой турбулентной конвекции. При этом возникают как чисто хаотические режимы, так и режимы с выделенной частотой осцилляций. Способность CFD программ воспроизводить динамику крупномасштабного потока (независимо от используемых моделей подсеточной турбулентности) представляется важнейшим критерием применимости этих программ к задачам проектирования объектов атомной энергетики.

В статье обосновывается выбор в качестве бенчмарка задачи о конвекции в прямоугольной области (раздел 2), описывается экспериментальная установка (раздел 3) и приводятся результаты экспериментов (раздел 4), попытка воспроизведения которых с помощью стандартного кода ANSYS CFX для двух важных случаев: $\Gamma = 1$ (кубическая полость) и $\Gamma = 0,1$ (тонкая вертикальная щель) представлена в разделе 5. В разделе 6 анализируются результаты, а раздел 7 является заключительным.

2. Конвекция в замкнутых объемах

Естественная конвекция в замкнутых полостях — базовый объект для моделирования различных конвективных процессов в инженерных задачах. Наибольшее количество работ посвящено изучению конвекции в прямоугольных полостях с наложенным горизонтальным перепадом температуры (нагрев и охлаждение на боковых стенках). Первоначальными были исследования в двумерной постановке, ставшие бенчмарками для оценки эффективности различных численных схем (см. например, [5–7]). Экспериментальных работ по изучению конвекции в прямоугольной полости с наложенным

горизонтальным градиентом температуры значительно меньше. В качестве экспериментального бенчмарка часто используются работы [8, 9], в которых детально рассмотрены конвективные течения воздуха в кювете размером $750 \times 750 \times 1500 \text{ мм}^3$ при значении числа Рэлея $\text{Ra} = 1,58 \cdot 10^9$. Выбранное в экспериментах соотношение сторон позволило организовать преимущественно двумерное течение.

Ситуация с наложенным вертикальным перепадом температуры значительно сложнее, так как в этом случае возможен целый набор крупномасштабных конвективных течений. Основные исследования крупномасштабных потоков в замкнутых объемах выполнены для конвекции в цилиндрических и кубических полостях. Первые численные расчеты конвекции в кубической полости с вертикальным перепадом температуры проводились для умеренных значений числа Рэлея (3,5·10³ ≤ Ra ≤ 6·10⁴) и различных значений числа Прандтля (0,71, 10 и 130) [10-13]. Было показано, что даже при небольших значениях надкритичности в ламинарных режимах возможно формирование течений различного типа. В работе [13] изучались их устойчивость и переход от одного типа движения к другому при изменении чисел Рэлея и Прандтля. Авторами работы произведена классификация возможных типов течений, которая в настоящее время считается общепринятой. Так, одиночный вал, параллельный вертикальным стенкам, обозначается как режим S1, диагонально ориентированный вал — как режим S2 и так далее. Продолжением работы [13] стал эксперимент [14], в которой методом цифровой трассерной визуализации (PIV) исследовались конвективные течения в кубе для жидкости с числом Прандтля Pr = 130 (силиконовое масло). Значения числа Рэлея менялись от $Ra = 5 \cdot 10^3$ до $Ra = 8 \cdot 10^4$. Из ранее предсказанных в [13] для жидкости с Pr = 130 пяти конвективных режимов (S1, S2, S5, S6 и S7) в эксперименте были обнаружены четыре (S1, S2, S5 и S7), кроме того наблюдались переходы от одного типа течений к другому при изменении числа Рэлея. В целом было показано хорошее согласие между численными и экспериментальными результатами. Важной особенностью конвективных течений в кубической полости является то, что даже при небольших надкритичностях основное течение является трехмерным. Численный анализ устойчивости различных типов течений в кубической полости для жидкостей с различными значениями числа Прандтля (Pr = 0,71 — воздух и Pr = 130 — силиконовое масло) при числах Рэлея, не превышающих $Ra = 1,5 \cdot 10^5$ проводился спектральным методом Галеркина в работах [15–17]. Прямое численное моделирование трехмерных течений в кубе выполнено в работе [18]. В результате этих вычислений были установлены границы устойчивости того или иного типа движения. Обнаружено появление хаотических конвективных режимов для чисел Рэлея в диапазоне от $Ra = 9 \cdot 10^4$ до $Ra = 1.5 \cdot 10^5$ и числа Прандтля Pr = 0,71 [19].

В контексте обсуждаемых приложений интерес представляет развитая турбулентная конвекция (с числами Рэлея $10^8 < \text{Ra} < 10^{13}$ и выше), однако исследований таких режимов выполнено немного. Это обусловлено тем, что эволюция крупномасштабных течений в турбулентных режимах протекает достаточно медленно, и, как показывают эксперименты, требуются десятки часов для того, чтобы описать временную эволюцию крупномасштабных структур. Проведение расчетов на таких характерных временах является нетривиальной задачей и требует тщательного выбора численной модели и высокой производительности вычислительной системы.

Среди задач о крупномасштабной динамике конвекции Рэлея-Бенара можно выделить детальные исследования инверсий крупномасштабной циркуляции (КМЦ) в полостях цилиндрической геометрии. Подробный анализ статистических характеристик инверсий проводился на основе экспериментов, изучающих конвекцию жидкого гелия в цилиндре с геометрическим параметром Г = 1 (отношением высоты цилиндра к его диаметру) [20]. Опыты, выполненные для чисел Рэлея $10^8 < \text{Ra} < 10^{13}$, показали, что при Ra > 10¹¹ направления вращения становятся равновероятными, а плотность распределения вероятности для интервала времени между инверсиями τ имеет пик при τ = 30 с (что приблизительно равняется времени оборота крупномасштабного вихря) и спадает с ростом τ по закону τ^{-1} . В работе [21] в экспериментах с водой ($\Gamma = 1$, $10^8 < \text{Ra} < 10^{11}$) анализировалась азимутальная динамика КМЦ. Авторами показано, что смена направления циркуляции может происходить двумя способами: «переориентацией» и «с приостановкой». В первом случае смена направления происходит без заметного уменьшения интенсивности циркуляции, а вероятность поворота на заданный угол падает по степенному закону с ростом значения угла поворота. Во втором случае перед инверсией происходит значительное снижение интенсивности циркуляции (приостановка), после которого циркуляция возобновляется в произвольном направлении (равновероятном для любого значения угла). В работе [22] изучалась роль геометрического параметра. В результате выявлено, что в низком цилиндре (Г = 0,5) степенной закон для вероятности поворота на различные углы сменяется экспоненциальным, а в высоком (Г = 2,3) все вариации направления циркуляции обладают достаточно узким сектором.

Прямоугольная геометрия полости интересна тем, что снимает вырождение задачи по углу. Эксперименты в квазидвумерном турбулентном потоке (в квадратной полости со стороной D = 248 мм и толщиной $d \approx D/4$) показали, что инверсии возникают только в ограниченном диапазоне значений числа

Рэлея [23]. Выполненные в этой же работе численные эксперименты для двумерной турбулентной конвекции в квадратной области позволили показать, что перебросы появляются только в определенном диапазоне чисел Прандтля и Рэлея. Интересно отметить, что построенная в этой работе картина инверсий крупномасштабного течения в турбулентной двумерной конвекции фактически воспроизводит картину перебросов, полученную для надкритической конвекции в ячейке Хеле-Шоу еще 30 лет назад [24]. В задаче исследования динамики крупномасштабной циркуляции на фоне турбулентной конвекции остается много открытых проблем. В частности, не ясна роль геометрии полости, не изучен механизм переброса, не закрыт вопрос о существовании выделенных частот во временных спектрах низших пространственных мод [3] и так далее.

3. Экспериментальная установка для исследования турбулентной конвекции в прямоугольных полостях

Экспериментальная установка представляет собой кубическую полость со стороной D = 250 мм (Рис. 1). Горизонтальные стенки, толщиной 30 мм, изготовлены из меди и выполняют роль теплообменников, а вертикальные стенки, толщиной 25 мм, изготовлены из плексигласа. Во фронтальной и

Рис. 1. Экспериментальная модель

задней стенках полости имеется система вертикальных пазов, в которые устанавливаются вертикальные плексигласовые перегородки толщиной 4 мм, выделяющие в центральной части куба прямоугольную область толщиной *d*. Расстояние между перегородками в центральной части может принимать значения от 15 до 125 мм. С помощью термостатов через теплообменники прокачивается термостатирующая жидкость (тосол) и с точностью до 0,1°С поддерживается перепад температуры $\pm \Delta T/2$ относительно комнатной температуры (в экспериментах рассматривается $\Delta T = 10$, 20 и 30°С, что соответствует числам Рэлея $Ra = 2, 2 \cdot 10^9$, $4, 4 \cdot 10^9$ и $6, 6 \cdot 10^9$). Кубическая полость заполняется дистиллированной водой, для которой при средней температуре 23°С число Прандтля составляет Pr = 7,0.

Важной особенностью предложенной конструкции модели является выделение исследуемой прямоугольной области внутри большего объема жидкости, поддерживаемой при тех же температурных условиях. Это играет особую роль при исследовании конвекции

в относительно тонких вертикальных слоях, подогреваемых (охлаждаемых) снизу (сверху). С точки зрения численных расчетов тонкие слои привлекательны возможностью реализации квазидвумерных [25, 26] и двумерных постановок [27, 28], но сопоставление с экспериментами в этом случае затруднено сложностью адекватного задания тепловых граничных условий на вертикальных гранях, которые тем больше влияют на характер конвекции, чем тоньше слой. В предлагаемой конструкции тепловые условия по обе стороны тонких вертикальных перегородок идентичны, что позволяет предполагать отсутствие теплопотока через них.

Все измерения выполняются в центральном вертикальном сечении полости xOz. Поле скорости восстанавливается с помощью метода PIV, основанного на измерении перемещения полиамидных частиц нейтральной плавучести (плотность $\rho = 1,0$ г/см³, диаметр около 20 мкм) в плоскости лазерного светового ножа. Измерительная область, в которой производится восстановление поля скорости, имеет размер 250×190 мм². Временная задержка между вспышками лазера находится в диапазоне от 80 до 100 мс и подбирается в зависимости от числа Рэлея. В экспериментах расчетная область составляет 32×32 пикс (пространственное разрешение 3 мм). Временной интервал между двумя последующими измерениями равен 1 с.

Температурные пульсации регистрируются с помощью одиннадцати дифференциальных медь-константановых термопар диаметром 0,2 мм. Термопары располагаются в центральном вертикальном сечении на высоте 125 мм от нижнего теплообменника и на расстоянии 21 мм друг от друга. Контрольный спай находится при постоянной комнатной температуре 23°С. Частота опроса термопар составляет от 1 до 10 Гц. Длительность экспериментов составляет от 2 до 25 часов.

4. Экспериментальное исследование турбулентной конвекции

Конвективные системы характеризуются тем, что даже на фоне развитой турбулентности в них возникают крупномасштабные потоки с нетривиальным характером эволюции. Для турбулентной

конвекции в рассматриваемом классе прямоугольных полостей измерения динамики поля скорости показали, что в зависимости от значений числа Рэлея и аспектного отношения могут реализоваться три различных режима крупномасштабной циркуляции (КМЦ) [4].

Первому режиму свойственна устойчивая циркуляция, интенсивность которой демонстрирует стохастические колебания, но направление циркуляции остается неизменным. Второй режим — режим с инверсиями, имеет чередование интервалов времени с КМЦ в том или ином направлении. Длительность этих интервалов случайна, а в пределах каждого интервала КМЦ ведет себя подобно режиму 1. В третьем, смешанном режиме наблюдаются многочисленные смены направления КМЦ, которые не разделяются интервалами с квазиустойчивой циркуляцией в одном направлении.

Выполненные в данной работе измерения температуры показывают, что эти режимы можно диагностировать и по результатам измерений температуры в небольшом числе точек, расположенных вдоль горизонтали в центральном сечении полости. Полученные мгновенные профили температуры раскладываются в ряд Фурье $T(x,0,t) = \sum A_n(t)\sin(2\pi nx/D)$, в котором первый член A_1 характеризует амплитуду крупномасштабных пульсаций температуры (здесь и далее считается, что система координат связана с центром полости, ось *z* направлена вверх, оси *x*, *y* — горизонтально (*y* поперек слоя). На рисунке 2 представлены фрагменты равной продолжительности (около 6 часов) записей вариаций амплитуды A_1 в полостях с аспектным отношением $\Gamma = 0,1$, $\Gamma = 0,2$ и $\Gamma = 1,0$ для одинакового перепада температур (Ra = 4,4·10⁹). Характер флуктуаций также указывает на три различных режима: пульсации вокруг нуля (Рис. 2, *a*), режим с инверсиями (Рис. 2, *б*) и осцилляции вокруг некоторого среднего значения (Рис. 2, *b*). Во втором режиме инверсии КМЦ не столь выражены, как при регистрации поля завихренности [4], что объясняется небольшим числом точек, в которых регистрировались значения температуры (при исследовании поля завихренности использовались значения скорости во всей области).

Наряду с характеристиками крупномасштабных течений, возникающих на фоне турбулентной конвекции, в численных расчетах важно адекватно воспроизвести локальные характеристики пульсаций

Рис. 2. Вариации амплитуды крупномасштабных пульсаций температуры при $Ra = 4, 4 \cdot 10^9$ в полостях с различной геометрией: $\Gamma = 0,1$ (смешанный режим) (*a*), $\Gamma = 0,2$ (режим с инверсиями) (*b*), $\Gamma = 1,0$ (режим без инверсий) (*b*)

Рис. 3. Среднее значение горизонтальной компоненты скорости для числа Рэлея Ra = 4,4 · 10⁹ в разных точках полости в зависимости от времени осреднения: центр полости – тонкая линия; точка вблизи боковой стенки – жирная линия; точка вблизи нижнего теплообменника – пунктир

скорости и температуры в конкретных областях потока. В качестве контрольных выбираются три точки: точка 1 — центр полости (x = 0, z = 0), 2 — точка вблизи боковой стенки (x = 104 мм, z = 0), 3 — точка вблизи нижнего теплообменника (x = 0, z = -95 мм).

Для оценки нижней границы длительности интервала времени, необходимого для вычисления статистических характеристик пульсаций, на рисунке 3 представлена зависимость средних значений вертикальной и горизонтальной компонент скорости от времени усреднения для трех разных точек полости. Из рисунка видно, что минимальное время для оценки средних значений составляет порядка 200 секунд, а для получения надежных значений необходимо не менее 1000 секунд. Зависимости показаны для режима $Ra = 4,4\cdot10^9$, но в рассмотренном диапазоне чисел Рэлея время выхода средних значений на стационар от числа Рэлея не зависит.

5. Расчеты турбулентной конвекции в кубической полости (Γ = 1) и щели (Γ = 0,1) в пакете ANSYS CFX

Расчет турбулентной конвекции выполнен на основе уравнений конвекции несжимаемой жидкости с использованием методики LES (Large Eddy Simulation) Смагоринского [31], которая предполагает разделение всех полей на крупномасштабные и мелкомасштабные: для скорости — $\mathbf{v} = \mathbf{U} + \mathbf{u}$, температуры — $T = \Theta + \theta$. На крупных масштабах решение получается явно, путем численного моделирования конвекции, а мелкомасштабная турбулентность параметризуется, то есть определяется через характеристики крупномасштабного движения.

Уравнения для крупномасштабных переменных имеют вид

$$\partial_{i}U_{i} + U_{j}\partial_{j}U_{i} + \partial_{j}\left\langle u_{i}u_{j}\right\rangle = -\frac{1}{\rho}\nabla P + \nu\partial_{jj}^{2}U_{i} + g\frac{\rho - \rho_{0}}{\rho}e_{i},$$

$$\partial_{i}\Theta + U_{j}\partial_{j}\Theta + \partial_{j}\left\langle u_{j}\Theta\right\rangle = \chi\partial_{jj}^{2}\Theta,$$

$$\partial_{j}U_{j} = 0,$$
(1)

где P — давление, χ — коэффициент температуропроводности, g — ускорение свободного падения, e_i — единичный вектор, ориентированный в направлении оси z, ρ_0 — плотность воды при температуре нижнего теплообменника, а плотность считается заданной функцией температуры (Θ , °C): $\rho = 1000,555 - 0,0708 \cdot \Theta - 0,003557 \cdot \Theta^2$.

Влияние мелкомасштабных вихрей на эволюцию крупномасштабных вихрей аппроксимируется выражением

$$\left\langle u_{i}u_{j}\right\rangle =\tau_{ij}^{\text{smag}}=-2C_{s}^{2}\Delta^{2}\left|\mathbf{S}\right|S_{ij},\tag{2}$$

где $S_{ij} = \partial_i U_j + \partial_j U_i$ — компоненты тензора скорости деформации; Δ — шаг сетки модели (если сетка неравномерная, то $\Delta = (h_x h_y h_z)^{1/3}$); $|\mathbf{S}|$ — норма тензора скорости деформации; C_s — постоянная Смагоринского. В расчетах используется равномерная сетка, в том числе и в области описания пограничного слоя. Формула (2) эквивалентна гипотезе о существовании эффективной вязкости $v_{eff} = v + C_s^2 \Delta^2 |\mathbf{S}|$, где v — коэффициент кинематической вязкости. Для оценки эффективной температуропроводности применяется гипотеза о постоянстве турбулентного числа Прандтля

(строгое подобие турбулентной температуропроводности и турбулентной вязкости), значение которого принимается равным 0,9. Таким образом, решается система уравнений вида:

$$\partial_{i}U_{i} + U_{j}\partial_{j}U_{i} = -\frac{1}{\rho}\nabla P + v_{eff}\partial_{jj}^{2}U_{i} + g\frac{\rho - \rho_{0}}{\rho}\delta_{iz},$$

$$\partial_{i}\Theta + U_{j}\partial_{j}\Theta = \chi_{eff}\partial_{jj}^{2}\Theta,$$

$$\partial_{i}U_{i} = 0.$$
(3)

В качестве граничных условий принимается постоянство температур на верхней и нижней гранях куба или щели и отсутствие теплообмена на боковых гранях. На стенках задается закон прилипания для гладкой стенки.

Рассматриваются два случая, отличающиеся режимами КМЦ (режимы 1 и 3 по классификации работы [4]): задачи о конвекции в прямоугольных полостях с аспектным отношением $\Gamma = 1$ (полость в виде куба) и $\Gamma = 0,1$ (щель). Число Прандтля является фиксированным Pr = 7, а числа Рэлея для различных аспектных отношений имеют значения, $Ra = 4,4\cdot10^9$ для $\Gamma = 1$ и $Ra = 2,2\cdot10^9$ для $\Gamma = 0,1$. При расчетах параметров конвекции в кубе используется сетка, состоящая из 3,375 млн. элементов (150 элементов на сторону куба), в щели — сетка из 1,5 млн. элементов. При этом размер стороны элемента составляет 1,66 мм в случае куба и 1 мм — для щели.

Вычисления проведены с использованием 18 ядер вычислительного кластера. При этом за сутки рассчитывалось около 100 с физического времени процесса течения в кубе. Расчет проведен до пяти тысяч секунд продолжительности физического процесса с шагом интегрирования, соответствующим среднему числу Куранта порядка 0,6 (максимальное значение числа Куранта составило 2,2).

6. Сравнение результатов расчетов и эксперимента

Прежде всего проведем сравнение средних полей скорости. На рисунках 4 и 5 показаны векторные поля средней скорости в центральном вертикальном сечении полости, полученные в расчете поля (на рисунке слева) и эксперименте (на рисунке справа). Рисунок 4 содержит результаты для кубической полости, в которой устанавливается циркуляция одного (произвольного) направления. Для сравнения выбрана экспериментальная реализация, в которой направление циркуляции совпадает с полученной в расчете. Отметим, что в эксперименте не регистрируется скорость в областях, прилегающих к горизонтальным границам — этим областям соответствуют белые полосы на представленных полях. Расчет не только воспроизводит структуру потока (что не удивительно, так как структура среднего течения проста), но и с хорошей точностью изображает максимальные значения скорости. В случае тонкой щели (Рис. 5) направление КМЦ меняется многократно (выделенное направление не наблюдается, и структура среднего поля становится сложнее, так как отражает более высокие моды поля скорости), при этом значения средних скоростей на порядок уменьшаются. Структуры средних полей в расчете и эксперименте качественно совпадают, максимальные значения скорости также близки.

Интерес представляет сравнение полей пульсаций скорости. На рисунках 4 в, г и 5 в, г показаны распределения энергии пульсаций скорости, полученные для куба и щели в расчетах и экспериментах.

Рис. 4. Куб. Среднее поле скорости (*a*, *б*) и энергия турбулентных пульсаций (*в*, *г*) в центральном вертикальном сечении (Г = 1): расчет (*a*, *в*) и эксперимент (*б*, *г*)

Для куба структура поля пульсаций выглядит проще (основные пульсации локализованы в двух ограниченных областях), и значения совпадают с точностью до нескольких процентов. В случае щели структура поля пульсаций качественно иная — она достаточно однородная по большей части полости и, хотя пиковые значения энергии пульсаций ниже, чем в кубе, интегральная энергия пульсаций в рассматриваемой плоскости выше, чем в кубе. Важно, что, несмотря на простую структуру средних полей, в обоих случаях течения существенно турбулентны, отношение общей энергии пульсаций скорости к энергии среднего течения составляет 0,3 для куба и 3,6 для щели. Однако полученные распределения указывают на недостаточную длительность обрабатываемых реализаций, так как в картинах сохраняется некоторая асимметрия по горизонтали, причины для которой при данной геометрии и наблюдающемся режиме циркуляции отсутствуют.

Рис. 5. Щель. Среднее поле скорости (a, δ) и энергия турбулентных пульсаций (e, c) в центральном вертикальном сечении $(\Gamma = 0, 1)$: расчет (a, e) и эксперимент (δ, c)

Рис. 6. Спектральная плотность энергии пульсаций температуры в четырех точках кубической полости (на расстоянии 21, 42, 63, 125 мм от центра боковой грани): расчет (*a*) и эксперимент (б)

Важным критерием адекватности выполняемых расчетов являются спектральные характеристики пульсаций скорости и температуры. На рисунке 6 приведены спектральные плотности энергии пульсаций температуры в четырех выделенных точках кубической полости. При этом длина экспериментальных рядов существенно превосходит длину расчетных (на порядок), что не позволяет сравнивать низкочастотную часть спектров. В высокочастотной части расчетные спектры воспроизводят перегиб, соответствующий переходу от инерционного интервала к диссипативному. В низких частотах экспериментальный спектр пульсаций температуры в точке у боковой стенки содержит пик, соответствующий колебаниям крупномасштабной циркуляции, который воспроизвести в расчетах пока не удается.

Спектры пульсаций скорости показаны на рисунке 7. Поскольку интерес представляет сравнение общей структуры спектра, на рисунке показаны сглаженные версии спектров. Для сравнения выбраны две точки: центр полости и точка на расстоянии 21 мм от боковой границы. В случае куба ($\Gamma = 1$) в центральной точке и эксперимент, и расчет дают полную изотропию поля пульсаций — спектры вертикальной и горизонтальной компонент совпадают, и поэтому на рисунке 7, *а* изображены только спектры горизонтальных пульсаций скорости. Расчетный спектр хорошо согласуется с экспериментальным до частоты 0,1 Гц. На более высоких частотах в экспериментальном сигнале доминирует шум, что приводит к завышению спектральной энергии. В спектрах хорошо виден инерционный интервал с колмогоровским распределением энергии (которому на рисунке соответствует прямая линия). Рисунок 7, *б* содержит спектр горизонтальных пульсаций скорости у боковой стенки. Структура спектра совсем иная — инерционный интервал выражен плохо, так как большая часть спектра определяется колебаниями крупномасштабной циркуляции.

Спектры пульсаций скорости для щели (при Г = 0,1) представлены на рисунках 7, *в*, *г*. Здесь приведены спектры и для горизонтальных, и для вертикальных пульсаций, поскольку турбулентные пульсации

Рис. 7. Спектральная плотность энергии пульсаций скорости в центре полости (*a*, *b*) и на расстоянии 21 мм от боковой стенки (δ , *c*) в кубе (*a*, δ) и щели (*b*, *c*): расчет – сплошные линии, эксперимент – пунктирные линии; v_x – толстые линии, v_x – тонкие линии

Рис. 8. Эволюция во времени амплитуды КМЦ в кубе (а) и щели (б): расчет – толстая линия, эксперимент – тонкая линия

демонстрируют явную анизотропию — энергия вертикальных пульсаций существенно выше во всем диапазоне частот. Важно, что расчеты хорошо воспроизводят спектральный состав пульсаций обеих компонент поля скорости для частот до 0,2 Гц в обеих из рассматриваемых точек, хотя структура спектра в них отличается в значительной степени.

Отдельного обсуждения заслуживает вопрос о воспроизводимости долговременной динамики КМЦ, возникающей на фоне развитой конвективной турбулентности. Рисунок 8 иллюстрирует временное поведение крупномасштабной моды амплитуды завихренности для куба для щели: и $B_{11}(t) = (4/D^2) \int_{-\infty}^{D/2} \int_{-\infty}^{D/2} \omega_y(x, z, t) \cos(\pi x/D) \cos(\pi z/D) dx dz .$ Показаны зависимости, полученные в

эксперименте и расчетах. Видно, что расчет правильно воспроизводит динамику этой важной характеристики течения. В кубе, действительно, устанавливается циркуляция с неизменным направлением и флуктуирующей амплитудой. В щели поведение КМЦ принципиально другое — выделенное направление циркуляции отсутствует, а амплитуда флуктуаций имеет бо́лышие значения. Спектры пульсаций амплитуды КМЦ, полученные и в расчетах, и экспериментах, подобны, несмотря на то, что расчетные ряды данных остаются существенно короче экспериментальных. Основное отличие состоит в том, что в случае куба расчет не позволяет четко идентифицировать выделенную частоту колебаний КМЦ, наблюдаемую в эксперименте

7. Выводы

Показано, что задача о конвекции Рэлея–Бенара в прямоугольных полостях с различным аспектным отношением совмещает простоту постановки с широким диапазоном реализующихся в ней режимов конвекции при высоких значениях числа Рэлея. Задача может служить одним из бенчмарков для CFD-кодов, обеспечивающих, в том числе, расчеты турбулентного теплообмена в атомной энергетике. Благодаря канонической геометрии расчетной области, можно надеяться на воспроизведение экспериментов различными исследовательскими группами с целью получения достоверной экспериментальной базы данных.

В качестве бенчмарка предлагается использовать эту задачу для фиксированного числа Рэлея $Ra = 4, 4 \cdot 10^9$ с тремя значениями аспектного отношения $\Gamma = 1$ (куб), $\Gamma = 0, 2$ и $\Gamma = 0, 1$ (щель), которые приводят к трем различным режимам крупномасштабной циркуляции в полости.

Выполненные с помощью пакета ANSYS CFX расчеты для двух аспектных отношений ($\Gamma = 1$ и $\Gamma = 0,1$) показали, что пакет позволяет адекватно воспроизводить как среднее течение, так и пространственное распределение и спектральный состав турбулентных пульсаций. Долговременные расчеты описывают также и динамику крупномасштабной циркуляции, хотя для точного сопоставления характеристик поведения системы требуется увеличение времени расчетов.

Литература

- 1. Betts P.L., Bokhari I.H. Experiments on turbulent natural convection in an enclosed tall cavity // Int. J. Heat Fluid Fl. 2000. V. 21, N. 6. P. 675-683. DOI
- 2. Гершуни Г.З., Жуховицкий Е.М., Непомнящий А.А. Устойчивость конвективных течений. М.: Наука, 1989. 320 с.
- 3. Зимин В.Д., Фрик П.Г. Турбулентная конвекция. М.: Наука, 1988. 178 с.
- 4. Васильев А.Ю., Фрик П.Г. Инверсии крупномасштабной циркуляции при турбулентной конвекции в прямоугольных областях // Письма в ЖЭТФ. – 2011. –Т. 93, № 6. – С. 363-367. DOI
- 5. *De Vahl Davis G.* Natural convection of air in a square cavity: a bench mark numerical solution // Int. J. Numer. Meth. Fl. 1983. V. 3, N. 3. P. 249-264. DOI
- 6. Hortmann M., Perić M., Scheurer G. Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions // Int. J. Numer. Meth. Fl. 1990. V. 11, N. 2. P. 189-207.DOI
- 7. *Christon M.A., Gresho P.M., Sutton S.B.* Computational predictability of time-dependant natural convection flows in enclosures (including a benchmark solution) // Int. J. Numer. Meth. Fl. 2002. V. 40, N. 8. P. 953-980. DOI
- 8. *Tian Y.S., Karayiannis T.G.* Low turbulence natural convection in an air filled square cavity: Part I: the thermal and fluid flow fields // Int. J. Heat Mass Tran. 2000. V. 43, N. 6. P. 849-866. DOI
- 9. *Tian Y.S., Karayiannis T.G.* Low turbulence natural convection in an air filled square cavity: Part II: the turbulence quantities // Int. J. Heat Mass Tran. 2000. V. 43, N. 6. P. 867-884. DOI
- Ozoe, H., Yamamoto, K., Churchill, S.W., Sayama, H. Three-dimensional, numerical analysis of laminar natural convection in a confined fluid heated from below // J. Heat Trans. - T. ASME. – 1976. – V. 98, N. 2. – P. 202-207. DOI
- 11. *Hernández R., Frederick R.L.* Spatial and thermal features of three dimensional Rayleigh-Bénard convection // Int. J. Heat Mass Tran. 1994. V. 37, N. 3. P. 411-424. DOI
- 12. Pallarés J., Cuesta I., Grau F.X., Giralt F. Natural convection in a cubical cavity heated from below at low Rayleigh numbers // Int. J. Heat Mass Tran. 1996. V. 39, N. 15. P. 3233-3247. DOI
- 13. *Pallarés J., Grau F.X., Giralt F.* Flow transitions in laminar Rayleigh-Bénard convection in a cubical cavity at moderate Rayleigh numbers // Int. J. Heat Mass Tran. 1999. V. 42, N. 4. P. 753-769. DOI
- 14. Pallarés J., Arroyo M.P., Grau F.X., Giralt F. Experimental laminar Rayleigh–Bénard convection in a cubical cavity at moderate Rayleigh and Prandtl numbers // Exp. Fluids. 2001. V. 31, N. 2. P. 208-218. DOI
- 15. Puigjaner D., Herrero J., Giralt F., Simó C. Stability analysis of the flow in a cubical cavity heated from below // Phys. Fluids. 2004. V. 16, N. 10. P. 3639-3655. DOI
- Puigjaner D., Herrero J., Giralt F., Simó C. Bifurcation analysis of multiple steady flow patterns for Rayleigh–Bénard convection in a cubical cavity at Pr = 130 // Phys. Rev. E. 2006. V. 73, N. 4. 046304. DOI
- 17. Puigjaner D., Herrero J., Simó C., Giralt F. Bifurcation analysis of steady Rayleigh–Bénard convection in a cubical cavity with conducting sidewalls // J. Fluid Mech. 2008. V. 598. P. 393-427. DOI
- 18. *Буссе Ф., Любимов Д.В., Любимова Т.П., Седельников Г.А.* Трехмерные режимы конвекции в кубической полости // МЖГ. – 2008. – № 1. – С. 3-11.
- 19. Puigjaner D., Herrero J., Simó C., Giralt F. From steady solutions to chaotic flows in a Rayleigh-Bénard problem at moderate Rayleigh numbers // Physica D. 2011. V. 240, N. 11. P. 920-934. DOI
- Sreenivasan K.R., Bershadskii A., Niemela J.J. Mean wind and its reversal in thermal convection // Phys. Rev. E. 2002. V. 65, N. 5. – 056306. DOI
- Brown E., Ahlers G. Rotations and cessations of the large-scale circulation in turbulent Rayleigh– Bénard convection // J. Fluid Mech. – 2006. – V. 568. – P. 351-386. DOI
- Xi H.-D., Xia K.-Q. Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: A comparative study in aspect ratio one and one-half geometries // Phys. Rev. E. – 2008. – V. 78, N. 3. – 036326. DOI

- 23. Sugiyama K., Ni R., Stevens R.J.A.M., Chan T.S. et al. Flow reversals in thermally driven turbulence // Phys. Rev. Lett. 2010. V. 105, N. 3. 034503. DOI
- 24. Любимов Д.В., Путин Г.Ф., Чернатынский В.И. О конвективных движениях в ячейке Хеле-Шоу // ДАН СССР. 1977. Т. 235, № 3. С. 554-556.
- 25. *Баранников В.А., Фрик П.Г., Шайдуров В.Г.* Спектральные характеристики двумерной турбулентной конвекции в вертикальной щели // ПМТФ. 1988. № 2. С. 42-46.
- 26. *Аристов С.Н., Фрик П.Г.* Крупномасштабная турбулентность в конвекции Рэлея-Бенара // Изв. АН СССР. МЖГ. 1989. № 5. С. 43-48.
- 27. Celani A., Matsumoto T., Mazzino A., Vergassola M. Scaling and universality in turbulent convection // Phys. Rev. Lett. 2002. V. 88, N. 5. 054503. DOI
- 28. Seychelles F., Ingremeau F., Pradere C., Kellay H. From intermittent to nonintermittent behavior in two dimensional thermal convection in a soap bubble // Phys. Rev. Lett. 2010. V. 105, N. 26. 264502. DOI
- 29. Богатырев Г.П., Гилев В.Г., Зимин В.Д. Пространственно-временные спектры стохастических колебаний в гидродинамических системах // Письма в ЖЭТФ. 1980. Т. 32, № 3. С. 229-232.
- Баранников В.А., Богатырев Г.П., Зимин В.Д., и др. Закономерности чередования пиков в спектрах стохастических колебаний гидродинамических систем: Препр. / Ин-т механики сплошных сред. – Свердловск, УНЦ АН СССР, 1982. – 32 с.
- 31. *Smagorinsky J.* General Circulation Experiments with the Primitive Equations. I. The basic experiment // Mon. Wea. Rev. 1963. V. 91, N.3. P. 99-164. DOI

Поступила в редакцию 03.10.12; опубликована в электронном виде 28.12.12

Сведения об авторах

Большухин Михаил Александрович, ктн, нач.отделения научно-технического обоснования проектов, ОАО «ОКБМ Африкантов», 603074, Нижний Новгород, Бурнаковский проезд, д. 15; E-mail: bolshukhin@okbm.nnov.ru

Васильев Андрей Юрьевич, асп., Пермский государственный национальный исследовательский университет (ПГНИУ), 614990, Пермь, ул. Букирева, д. 15; E-mail: valdemar326@mail.ru

Будников Алексей Владимирович, ктн, гл.специалист, ОАО «ОКБМ Африкантов»; E-mail: budnikov@okbm.nnov.ru

Патрушев Дмитрий Николаевич, инж., ОАО «ОКБМ Африкантов»

Романов Роман Игоревич, инж., ОАО «ОКБМ Африкантов»

Свешников Дмитрий Николаевич, нач.бюро, ОАО «ОКБМ Африкантов»

Сухановский Андрей Николаевич, кфмн, нс, Институт механики сплошных сред УрО РАН (ИМСС УрО РАН), 614013, Пермь, ул. Академика Королева, д. 1; E-mail: san@icmm.ru

Фрик Петр Готлобович, дфмн, проф., зав.лаб., ИМСС УрО РАН; E-mail: frick@icmm.ru