УДК 539.3

МОДЕЛИРОВАНИЕ КАРКАСОВ ЗДАНИЙ КАК ПРОСТРАНСТВЕННЫХ СТЕРЖНЕВЫХ СИСТЕМ С ГЕОМЕТРИЧЕСКОЙ И ФИЗИЧЕСКОЙ НЕЛИНЕЙНОСТЬЮ

Ю.М. Ветюков^{1,2}, В.В. Елисеев¹

¹Санкт-Петербургский государственный политехнический университет, Санкт-Петербург, Россия ²Johannes Kepler University Linz, Austria

Рассматривается напряжённо-деформированное состояние стержневых железобетонных каркасов зданий повышенной этажности при различных статических воздействиях: весовых, ветровых и других. Акценты ставятся на учёте геометрических и физических нелинейностей в пространственных задачах для систем многих стержней. Используются нелинейная теория стержней, физически нелинейная механика трёхмерной среды в приложении к железобетону и алгоритмы вычислительной механики.

Ключевые слова: механика стержней, нелинейная упругость, железобетон, метод конечных элементов

MODELING OF BUILDING FRAMES AS SPATIAL ROD STRUCTURES WITH GEOMETRIC AND PHYSICAL NONLINEARITIES

Yu.M. Vetyukov^{1,2} and V.V. Eliseev¹

¹Saint-Petersburg State Polytechnic University, Saint-Petersburg, Russia ²Johannes Kepler University Linz, Austria

We consider the stress-strain state of steel concrete rods, which comprise the frames of high multi-storey buildings under various static loadings: weight, wind, etc. The emphasis is put on geometric and physical nonlinearities in three-dimensional problems for the systems of multiple rods. Investigation is performed using the nonlinear theory of rods, physically nonlinear three-dimensional continuum mechanics in application to steel concrete, and the algorithms of computational mechanics.

Keywords: rod mechanics, nonlinear elasticity, steel concrete, finite element method

В связи с повсеместным строительством высотных зданий возрастает актуальность математического моделирования их напряженно-деформированного состояния. В поведении каркасов при этом становятся все более заметными геометрические и физические нелинейности. Поэтому на смену традиционным методам строительной механики приходит современная нелинейная теория стержней — об этом данная работа.

1. Уравнения нелинейной теории стержней

В механике твёрдого деформируемого тела развиты и используются в приложениях модели различной размерности. Для каркасов больших зданий заслуживают предпочтения одномерные модели — стержневые.

Механике стержней посвящены тысячи работ. Но лишь малая их часть содержит изложение основ теории [1–9]. Бернулли и Эйлер рассматривали стержни как материальные линии, получив при этом множество точных результатов [5]. Коссера развили этот прямой подход, считая частицы стержня элементарными твёрдыми телами

[9]. Справедливость таких представлений выяснилась сравнительно недавно при асимптотическом анализе трёхмерных задач теории упругости [1–4].

Линия стержня определяется зависимостью радиус-вектора от лагранжевой координаты: $\mathbf{r} = \mathbf{r}(s)$ (обычно s — дуговая координата в начальном состоянии). Используя обозначение производной $(...)' \equiv \partial/\partial s$ и указатель начальных значений $(...)_0$, будем иметь $|\mathbf{r}'_0| = 1$. Для задания угловой ориентации с каждой частицей связывается тройка ортов $\mathbf{e}_i(s)$ (в начальном состоянии — $\mathbf{e}_{i0}(s)$). Вращение локального базиса вдоль оси определяется $\mathbf{\Omega}$ — вектором кривизны и кручения: $\mathbf{e}'_i = \mathbf{\Omega} \times \mathbf{e}_i \Leftrightarrow \mathbf{\Omega} = \mathbf{e}_i \times \mathbf{e}'_i/2$ (суммируем по повторяющемуся индексу).

Вводится тензор поворота частицы (от начального состояния к деформированному): $\mathbf{P} \equiv \mathbf{e}_i \mathbf{e}_{i0} \Leftrightarrow \mathbf{e}_i = \mathbf{P} \cdot \mathbf{e}_{i0}$. Дифференцируя, получим [2, 3]

$$\mathbf{P}' = \mathbf{\kappa} \times \mathbf{P}, \quad \mathbf{\kappa} = \mathbf{\Omega} - \mathbf{P} \cdot \mathbf{\Omega}_0 = \kappa_i \mathbf{e}_i. \tag{1}$$

Вектор к определяет непостоянство поворота — изгибно-крутильную деформацию. Другой вектор деформации — Г, характеризует сдвиг и растяжение-сжатие:

$$\mathbf{\Gamma} = \mathbf{r}' - \mathbf{P} \cdot \mathbf{r}'_0 = \Gamma_i \mathbf{e}_i \,. \tag{2}$$

Вся система уравнений выводится из принципа виртуальной работы [2, 3]. Но прежде рассмотрим соотношения для вариаций $\delta \mathbf{r}$ и $\delta \mathbf{P} = \delta \boldsymbol{\theta} \times \mathbf{P}$, являющиеся результатами варьирования (1) и (2):

$$\delta \mathbf{r}' - \delta \mathbf{\theta} \times \mathbf{r}' = \mathbf{e}_i \delta \Gamma_i, \quad \delta \mathbf{\theta}' = \mathbf{e}_i \delta \kappa_i. \tag{3}$$

Распределёнными внешними нагрузками служат **q** и **m** — сила и момент на единицу «длины». Для отрезка стержня уравнение виртуальной работы имеет вид:

$$\int_{s_1}^{s_2} \left(\mathbf{q} \cdot \delta \mathbf{r} + \mathbf{m} \cdot \delta \mathbf{\theta} + \delta A^i \right) ds + \left(\mathbf{Q} \cdot \delta \mathbf{r} + \mathbf{M} \cdot \delta \mathbf{\theta} \right) \Big|_{s_1}^{s_2} = 0.$$
(4)

Здесь **Q** и **M** — внутренние сила и момент, действующие в точке *s* «справа налево»; δA^i — работа внутренних сил на единицу «длины». Преобразуя двойную подстановку в интеграл, придём к локальному вариационному уравнению

$$(\mathbf{q} + \mathbf{Q}') \cdot \delta \mathbf{r} + (\mathbf{m} + \mathbf{M}') \cdot \delta \theta + \mathbf{Q} \cdot \delta \mathbf{r}' + \mathbf{M} \cdot \delta \theta' = -\delta A^i.$$
(5)

На «жёстких» смещениях $\delta \mathbf{r} = \text{const} + \delta \boldsymbol{\theta}_1 \times \mathbf{r}$, $\delta \boldsymbol{\theta} = \delta \boldsymbol{\theta}_1 = \text{const}$ должно быть $\delta A^i = 0$; это приводит к известным уравнениям баланса сил и моментов:

$$Q' + q = 0, \quad M' + r' \times Q + m = 0.$$
 (6)

Но тогда из уравнения (5) с учетом (3) вытекает

$$\mathbf{M} \cdot \mathbf{e}_i \delta \mathbf{\kappa}_i + \mathbf{Q} \cdot \mathbf{e}_i \delta \mathbf{\Gamma}_i = -\delta A^i \,. \tag{7}$$

Имея выражения векторов деформации и уравнения баланса, для упругих стержней можем пойти дальше — тогда существует потенциал внутренних сил: $\delta \Pi = -\delta A^i$. Из (7) следует, что:

$$\Pi = \Pi (\kappa_i, \Gamma_i), \quad \mathbf{M} = \frac{\partial \Pi}{\partial \kappa_i} \mathbf{e}_i, \quad \mathbf{Q} = \frac{\partial \Pi}{\partial \Gamma_i} \mathbf{e}_i.$$
(8)

Эти соотношения упругости замыкают систему уравнений нелинейной теории стержней типа Коссера.

Исследователями часто используется модель Кирхгофа с внутренней связью: $\Gamma \equiv 0$ — без растяжения (сжатия) и сдвига. В этом случае соотношение упругости для **Q** не может быть написано и силы определяются уравнениями баланса (6). Но в строительных конструкциях сжатие играет важную роль; предпочтительна модель с растяжением-сжатием и для численного анализа. Поэтому для моделирования конструкций с несущественными сдвиговыми деформациями наиболее подходящим является вариант типа Кирхгофа-Клебша:

$$\Gamma = \varepsilon \mathbf{t}, \quad \mathbf{t} = \frac{\mathbf{r}'}{|\mathbf{r}'|} = \frac{\mathbf{r}'}{(1+\varepsilon)}, \quad Q_t = \frac{\partial \Pi}{\partial \varepsilon}, \quad \mathbf{M} = \mathbf{e}_i \frac{\partial \Pi}{\partial \kappa_i}.$$
 (9)

Здесь є — относительное удлинение; **t** — орт касательной; соотношения упругости пишутся для продольной силы и моментов. Осталось найти зависимость $\Pi = \Pi(\kappa_i, \varepsilon)$.

Прямой подход к стержням как линиям — лишь часть современной теории стержней. Для определения функции П, а также для восстановления напряжённого состояния в сечении по решению одномерной задачи необходимо рассмотреть трёхмерные модели [2, 4]. При этом для исследования напряженно-деформированного состояния элемента стержня достаточной оказывается геометрически линейная постановка, так как эффект геометрической нелинейности проявляется лишь в масштабе всей конструкции.

2. Физически нелинейная модель бетона

В геометрически линейной постановке для трёхмерной упругой среды имеем известную полную систему уравнений [2, 10]:

$$\nabla \cdot \boldsymbol{\tau} + \mathbf{f} = 0, \quad \boldsymbol{\varepsilon} = \nabla \mathbf{u}^{S}, \quad \boldsymbol{\tau} = \frac{\partial \Pi_{3}}{\partial \boldsymbol{\varepsilon}}.$$
 (10)

Здесь т и є — тензоры напряжений и деформаций»; **u** и **f** — векторы перемещений и объёмных сил; $\Pi_3(\varepsilon)$ — энергия деформации на единицу объёма; $(...)^S$ — знак симметрирования; ∇ — оператор Гамильтона. Распространёнными граничными условиями служат соотношения:

$$\mathbf{u}\big|_{O_1} = \mathbf{u}_0(\mathbf{r}), \qquad \mathbf{n} \cdot \boldsymbol{\tau}\big|_{O_2} = \mathbf{p}(\mathbf{r}), \tag{11}$$

то есть на части поверхности O_1 задаются перемещения, на остальной части O_2 — поверхностные силы; **r** — радиус-вектор, **n** — орт нормали к поверхности.

Для перехода от трёхмерной модели стержня к одномерной в технических приложениях эффективен вариационный подход с аппроксимацией решения по сечению [2]. Полная система из трёх групп уравнений соответствует принципу Хеллингера–Васидзу [2, 10]:

$$\delta H = 0,$$

$$H[\mathbf{u}, \boldsymbol{\tau}, \boldsymbol{\varepsilon}] \equiv \int_{V} \left(\boldsymbol{\tau} \cdot \cdot \left(\nabla \mathbf{u}^{s} - \boldsymbol{\varepsilon} \right) + \Pi_{3} \left(\boldsymbol{\varepsilon} \right) - \mathbf{f} \cdot \mathbf{u} \right) dV - \int_{O_{1}} \mathbf{n} \cdot \boldsymbol{\tau} \cdot \left(\mathbf{u} - \mathbf{u}_{0} \right) dO - \int_{O_{2}} \mathbf{p} \cdot \mathbf{u} \, dO.$$
(12)

Вариация функционала имеет вид:

$$\delta H = \int_{V} \left(\delta \boldsymbol{\tau} \cdot \left(\nabla \mathbf{u}^{S} - \boldsymbol{\varepsilon} \right) - \left(\nabla \cdot \boldsymbol{\tau} + \mathbf{f} \right) \cdot \delta \mathbf{u} + \left(\frac{\partial \Pi_{3}}{\partial \boldsymbol{\varepsilon}} - \boldsymbol{\tau} \right) \cdot \cdot \delta \boldsymbol{\varepsilon} \right) dV - \int_{O_{1}} \mathbf{n} \cdot \delta \boldsymbol{\tau} \cdot \left(\mathbf{u} - \mathbf{u}_{0} \right) dO + \int_{O_{2}} \left(\mathbf{n} \cdot \boldsymbol{\tau} - \mathbf{p} \right) \cdot \delta \mathbf{u} \, dO.$$
(13)

Отсюда следуют все уравнения полной системы (10) и граничные условия (11).

Важно, что энергия деформации $\Pi_3(\varepsilon)$ не обязана быть квадратичной формой — допускается физическая нелинейность. Характерное для бетона нелинейное поведение не вызывает поэтому непреодолимых трудностей при моделировании каркасов зданий.

Бетон не является упругим и проявляет свойства ползучести, пластичности и вязкости [11–13]. Но при медленной монотонной нагрузке для описания его поведения во времени можно использовать модель старения теории ползучести с методикой изохронных кривых [10]. В этом случае достаточным является представление об объекте исследования как упругом теле с зависящими от времени свойствами — что и принято в данной работе.

Для дальнейших действий необходимо задать конкретный вид $\Pi_3(\varepsilon)$. В изотропной среде — это функция инвариантов:

$$\Pi_{3} = \Pi_{3} (I_{1}, I_{2}, I_{3}); \quad I_{1} = \operatorname{tr} \boldsymbol{\varepsilon}, \quad I_{2} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\varepsilon} = \operatorname{tr} \boldsymbol{\varepsilon}^{2}, \quad I_{3} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\varepsilon} - \operatorname{tr} \boldsymbol{\varepsilon}^{3}.$$
(14)

Обычно используются иные инварианты — главные, но с ними формулы сложнее. Производные таковы:

$$\frac{\partial I_1}{\partial \boldsymbol{\varepsilon}} = \mathbf{I}, \quad \frac{\partial I_2}{\partial \boldsymbol{\varepsilon}} = 2\boldsymbol{\varepsilon}, \quad \frac{\partial I_3}{\partial \boldsymbol{\varepsilon}} = 3\boldsymbol{\varepsilon}^2.$$
(15)

При растяжении–сжатии простейший вариант зависимости $\sigma(\varepsilon)$ для бетона — кубическая парабола [11, 12]:

$$\sigma = E\varepsilon + E_1\varepsilon^2 + E_2\varepsilon^3, \qquad (16)$$

E — модуль Юнга, коэффициенты $E_{1,2}$ определим ниже. Тогда функция Π_3 должна быть полиномом четвёртой степени. В (14) будем иметь

$$\Pi_{3} = \frac{\lambda}{2}I_{1}^{2} + \mu I_{2} + m_{1}I_{1}^{3} + m_{2}I_{1}I_{2} + m_{3}I_{3} + K_{1}I_{1}^{4} + K_{2}I_{1}^{2}I_{2} + K_{3}I_{1}I_{3} + K_{4}I_{2}^{2}.$$
(17)

Здесь λ и μ — постоянные Ламе: $\mu = E/(2+2\nu)$, $\lambda = 2\mu\nu/(1-2\nu)$; ν — коэффициент Пуассона. Кубические слагаемые с коэффициентами $m_1, ..., m_3$ соответствуют известной модели Мурнагана [2]. Постоянные $K_1, ..., K_4$ определяют вклад четвёртого порядка. Дифференцируя (17), найдём напряжение

$$\boldsymbol{\tau} = \left(\lambda I_1 + 3m_1 I_1^2 + m_2 I_2 + 4K_1 I_1^3 + 2K_2 I_1 I_2 + K_3 I_3\right) \mathbf{I} + \left(\mu + m_2 I_1 + K_2 I_1^2 + 2K_4 I_2\right) 2\boldsymbol{\varepsilon} + \left(m_3 + K_3 I_1\right) 3\boldsymbol{\varepsilon}^2.$$
(18)

Проведём мысленный эксперимент с одноосным растяжением-сжатием (**i**, **j**, **k** — орты декартовой системы координат, соответствующие осям x, y, z):

$$\boldsymbol{\tau} = \boldsymbol{\sigma} \mathbf{i} \mathbf{i},$$

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon} \left(\mathbf{i} \mathbf{i} - \boldsymbol{v} \left(\mathbf{j} \mathbf{j} + \mathbf{k} \mathbf{k} \right) \right) \implies I_1 = (1 - 2\boldsymbol{v})\boldsymbol{\varepsilon}, \quad I_2 = (1 + 2\boldsymbol{v}^2)\boldsymbol{\varepsilon}^2, \quad I_3 = (1 - 2\boldsymbol{v}^3)\boldsymbol{\varepsilon}^3; \quad (19)$$

$$\boldsymbol{\sigma}_x = \boldsymbol{\sigma} \left(\boldsymbol{\varepsilon} \right), \ \boldsymbol{\sigma}_y = 0.$$

В этом случае полином третьей степени в выражении σ_y должен быть тождественно равен нулю — и это даёт три соотношения между $\lambda, ..., K_4$. Равенство для σ_x эквивалентно (16).

При сдвиге

$$\boldsymbol{\varepsilon} = \frac{1}{2} \gamma \left(\mathbf{i} \mathbf{j} + \mathbf{j} \mathbf{i} \right) \implies I_1 = I_3 = 0, \quad I_2 = \frac{1}{2} \gamma^2.$$
(20)

Соображения симметрии подсказывают, что в случае сдвига $\tau = \tau(\gamma)(ij + ji)$. Следовательно,

$$m_2 = m_3 = 0, \quad \tau = \mu \gamma + K_4 \gamma^3.$$
 (21)

Определяющие соотношения для бетона пытались строить многие авторы, однако необходимая ясность пока не достигнута. Есть сложные наследственные модели с нелинейными интегральными операторами [10], но их рассмотрение выходит за рамки данной работы. Здесь необходимый учёт физической нелинейности бетона делается на основе диаграммы деформирования из книги [12] (Рис. 1), теории старения и построений (17)–(21). Разрушающее напряжение при сжатии (σ_1) по модулю значительно больше, чем при растяжении (σ_2), поэтому функция $\sigma(\varepsilon)$ не является нечётной. Простейшая аппроксимация имеет вид кубического полинома (16).

Анализируя экстремумы кубической функции, представленной на рисунке 1, легко установить следующие соотношения:

$$2E_{1} = -E\left(\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}}\right) < 0, \qquad 3E_{2} = \frac{E}{\varepsilon_{1}\varepsilon_{2}} < 0,$$

$$\sigma_{1} = E\frac{\varepsilon_{1}}{2}\left(1 - \frac{\eta}{3}\right), \qquad \eta \equiv \frac{\varepsilon_{1}}{\varepsilon_{2}}, \qquad \frac{\sigma_{1}}{\sigma_{2}} \equiv \zeta = \eta^{2}\frac{3 - \eta}{3\eta - 1}.$$
(22)

Рис. 1. Диаграмма деформирования бетона

Диаграмма сдвига соответствует нечётной функции (21). Для коэффициентов в линейных слагаемых имеем связь $\mu = E/(2+2\nu)$ (коэффициент Пуассона для бетона обычно имеет значения в диапазоне 0,15–0,22). Коэффициент K_4 найдём из следующих соображений: сдвиговая деформация γ есть наложение растяжения и сжатия под углами $\pm \pi/4$ с деформацией $\gamma/2$; разрушение произойдёт от растяжения. Следовательно,

$$\gamma_2 = 2\varepsilon_2 = -\gamma_1 \quad \Rightarrow \quad 3K_4 = \frac{\mu}{\gamma_1 \gamma_2} = -\frac{\mu}{4\varepsilon_2^2} \,. \tag{23}$$

Однако это лишь гипотеза (экспериментальное подтверждение авторам не известно).

О ползучести бетона данных недостаточно. Кривую ползучести в виде роста линейной деформации от времени можно найти в [13]; в течение года рост деформаций под действием статической нагрузки достигает 150%, после чего процесс ползучести прекращается. Есть данные, что в течение первого месяца величина $|\sigma_1|$ растёт с 13–25 МПа до 23–40 МПа, а σ_2 — с 2 МПа до 2,4–2,9 МПа; модуль Юнга увеличивается с 23–31 ГПа до 33–43 ГПа.

В рамках модели старения параметры E, σ_1 и другие можно считать функциями времени. Кубических функций $\sigma(\varepsilon)$ и $\tau(\gamma)$ достаточно для моделирования напряженнодеформированного состояния бетонных стержней.

3. Определяющие соотношения для железобетонных стержней

Стержень в форме цилиндра вытянут вдоль оси z. Основание цилиндра — плоская фигура F. Радиус-вектор точки цилиндра имеет вид $\mathbf{r} = z\mathbf{k} + \mathbf{x}$ ($\mathbf{x} \in F$). Рассмотрим случай произвольных объёмных нагрузок, для чего воспользуемся вариационным принципом (12). Поверхностные силы — предельный случай объёмных сил; вся поверхность — это O_2 , где $\mathbf{p} = 0$. Тогда в функционале H остаётся лишь объёмный интеграл.

Задание аппроксимаций **u**, ε и τ — ответственный шаг. В соответствии с представлениями механики стержней принимаем:

$$\mathbf{u} = \mathbf{U}(z) + \mathbf{\theta}(z) \times \mathbf{x}; \quad \mathbf{\varepsilon} = \mathbf{\varepsilon}_{z} \mathbf{k} \mathbf{k} + \gamma^{0} \mathbf{k}^{S}, \quad \mathbf{\varepsilon}_{z} \equiv \gamma_{z} + \mathbf{\omega}_{\perp} \times \mathbf{x} \cdot \mathbf{k},$$

$$\gamma^{0} \equiv \gamma_{\perp} + \mathbf{\omega}_{z} \mathbf{k} \times \mathbf{x} \quad \left(\mathbf{\varepsilon}_{z} \mathbf{k} + \gamma^{0} = \gamma(z) + \mathbf{\omega}(z) \times \mathbf{x}\right);$$

$$\mathbf{\tau} = \sigma_{z} \mathbf{k} \mathbf{k} + 2\mathbf{s} \mathbf{k}^{S}, \quad \sigma_{z} = F^{-1} Q_{t} + \mathbf{x} \cdot \mathbf{J}^{-1} \times \mathbf{k} \cdot \mathbf{M}_{\perp},$$
(24)

$$\mathbf{s} = F^{-1}\mathbf{Q}_{\perp} + M_z \nabla \Phi \times \mathbf{k}; \quad \mathbf{J} = \int_F \mathbf{x} \mathbf{x} \, dF, \quad \int_F \mathbf{x} \, dF = \mathbf{0},$$
$$\Phi \Big|_{\partial F} = \mathbf{0}, \quad 2 \int_F \Phi \, dF = \mathbf{1}.$$

Здесь присутствуют обычные для стержней перемещения U, повороты θ , силы Q, моменты M и векторы деформации γ и ω (последние соответствуют Г и к в геометрически нелинейной модели). Вид аппроксимации ε подсказан выражением $\nabla \mathbf{u}^{s}$; Φ — функция напряжений из соответствующей задачи Сен-Венана [2].

В функционале Н будем иметь

$$\boldsymbol{\tau} \cdot \boldsymbol{\varepsilon} = \boldsymbol{\sigma}_{z} \boldsymbol{\varepsilon}_{z} + \boldsymbol{s} \cdot \boldsymbol{\gamma}^{0}, \qquad \int_{F} \boldsymbol{\tau} \cdot \boldsymbol{\varepsilon} \, dF = \mathbf{Q} \cdot \boldsymbol{\gamma} + \mathbf{M} \cdot \boldsymbol{\omega},$$

$$\int_{F} \boldsymbol{\tau} \cdot \left(\nabla \mathbf{u}^{S} - \boldsymbol{\varepsilon} \right) dF = \mathbf{Q} \cdot \left(\mathbf{u}' - \boldsymbol{\theta} \times \mathbf{k} - \boldsymbol{\gamma} \right) + \mathbf{M} \cdot \left(\boldsymbol{\theta}' - \boldsymbol{\omega} \right),$$
(25)

а в выражении δH

$$\int_{F} \delta \Pi_{3}(\boldsymbol{\varepsilon}) dF = \int_{F} \left(\sigma_{z}^{0} \left(\delta \boldsymbol{\gamma}_{z} + \delta \boldsymbol{\omega}_{\perp} \times \mathbf{x} \cdot \mathbf{k} \right) + \mathbf{s}^{0} \cdot \left(\delta \boldsymbol{\gamma}_{\perp} + \delta \boldsymbol{\omega}_{z} \mathbf{k} \times \mathbf{x} \right) \right) dF , \qquad (26)$$

где величины σ_z^0 и \mathbf{s}^0 вычисляются в трёхмерном теле ($\mathbf{\tau}^0 = \sigma_z^0 \mathbf{k} \mathbf{k} + \mathbf{s}^0 \mathbf{k}^S = \partial \Pi_3 / \partial \mathbf{\epsilon}$) по аппроксимациям деформаций из (24).

Из вариационного уравнения (26) получается полная система уравнений, описывающая деформирование стержня. Каждой свободной вариации отвечает свое уравнение: вариациям δU и $\delta \theta$ — баланс сил и моментов; δQ и δM — выражения векторов деформации (γ и ω через U', θ и θ'); $\delta \gamma$ и $\delta \omega$ — соотношения упругости. Последние уравнения представляют наибольший интерес:

$$\mathbf{Q} = \int_{F} \left(\sigma_{z}^{0} \mathbf{k} + \mathbf{s}^{0} \right) dF, \quad \mathbf{M} = \int_{F} \mathbf{x} \times \left(\sigma_{z}^{0} \mathbf{k} + \mathbf{s}^{0} \right) dF.$$
(27)

Эти очевидные равенства оказались следствием логически стройной вариационной процедуры.

Запишем соотношения упругости для железобетонных стержней. Будем рассматривать прямоугольное сечение $|x_1| \le h_1/2$, $|x_2| \le h_2/2$ (введены декартовы координаты в плоскости сечения). Аппроксимацию ε_z из (24) подставим в (16) и затем в (27). Вычислив интегралы, найдём продольную силу и изгибающие моменты:

$$Q_{t} = \int_{F} \sigma_{z} dF = \left(E\varepsilon + E_{1}\varepsilon^{2} + E_{2}\varepsilon^{3}\right)h_{1}h_{2} + \left(E_{1} + 3E_{2}\varepsilon\right)\left(\omega_{1}^{2}h_{2}^{2} + \omega_{2}^{2}h_{1}^{2}\right)\frac{h_{1}h_{2}}{12},$$

$$M_{1} = \int_{F} \sigma_{z}x_{2}dF = \left(E + 2E_{1}\varepsilon + 3E_{2}\varepsilon^{2}\right)\omega_{1}\frac{h_{1}h_{2}^{3}}{12} + E_{2}\omega_{1}\left(\omega_{1}^{2}\frac{h_{2}^{2}}{5} + \omega_{2}^{2}\frac{h_{1}^{2}}{3}\right)\frac{h_{1}h_{2}^{3}}{16},$$

$$M_{2} = -\int_{F} \sigma_{z}x_{1}dF = \left(E + 2E_{1}\varepsilon + 3E_{2}\varepsilon^{2}\right)\omega_{1}\frac{h_{2}h_{1}^{3}}{12} + E_{2}\omega_{2}\left(\omega_{2}^{2}\frac{h_{1}^{2}}{5} + \omega_{1}^{2}\frac{h_{2}^{2}}{3}\right)\frac{h_{2}h_{1}^{3}}{16}.$$
(28)

При этом в аппроксимации для осевой деформации (26) $\varepsilon_z = \varepsilon \equiv \gamma_z$.

Далее обратимся к касательным напряжениям:

$$s_{1} = (\gamma_{1} - \omega_{z}x_{2}) \Big(\mu + K_{4} \Big(\gamma_{1}^{2} + \gamma_{2}^{2} + \omega_{z}^{2} \Big(x_{1}^{2} + x_{2}^{2} \Big) + 2\omega_{z} \Big(x_{1}\gamma_{2} - x_{2}\gamma_{1} \Big) \Big) \Big),$$

$$s_{2} = (\gamma_{2} + \omega_{z}x_{1}) \Big(\mu + K_{4} \Big(\gamma_{1}^{2} + \gamma_{2}^{2} + \omega_{z}^{2} \Big(x_{1}^{2} + x_{2}^{2} \Big) + 2\omega_{z} \Big(x_{1}\gamma_{2} - x_{2}\gamma_{1} \Big) \Big) \Big).$$
(29)

Поскольку в данной работе используется стержневая модель без сдвига, полагаем $\gamma_1 = \gamma_2 = 0$; перерезывающие силы определяются балансом моментов. Вычислим крутящий момент:

$$M_{t} = \int_{F} \left(x_{1}s_{2} - x_{2}s_{1} \right) dF = \omega_{z} \frac{h_{1}h_{2}}{12} \left(\mu \left(h_{1}^{2} + h_{2}^{2} \right) + K_{4} \omega_{z}^{2} \left(\frac{1}{8} \left(h_{1}^{4} + h_{2}^{4} \right) + \frac{1}{6} h_{1}^{2} h_{2}^{2} \right) \right).$$
(30)

Но все выкладки проведены без учёта арматуры. При жёсткости тонкого арматурного прута на растяжение C^0 и координатах $x_1^{0(k)}$, $x_2^{0(k)}$ (k — номер прута) усилие в арматуре будет следующим:

$$T^{0(k)} = C^0 \left(\varepsilon + \omega_1 x_2^{0(k)} - \omega_2 x_1^{0(k)} \right).$$
(31)

В выражениях для продольной силы и моментов (28) добавятся слагаемые:

$$\Delta Q_t = C^0 \sum_k T^{0(k)}, \quad \Delta M_1 = C^0 \sum_k x_2^{0(k)} T^{0(k)}, \quad \Delta M_2 = -C^0 \sum_k x_1^{0(k)} T^{0(k)}.$$
(32)

Вклад арматуры в крутящий момент может проявиться лишь вследствие геометрически нелинейных эффектов в сечении, либо при предварительном напряжении прутьев. В настоящей работе этот вклад не рассматривается.

4. Вычислительный алгоритм

Используемый вычислительный алгоритм представляет собой дальнейшее развитие и обобщение численного метода, впервые применявшегося в работе [14]. Новое в настоящей работе — учёт физической нелинейности и особая конечно-элементная дискретизация.

Используем следующую одномерную вариационную постановку:

$$\mathcal{F} = \int \left(\Pi(\kappa_i, \varepsilon) - \mathbf{q} \cdot \mathbf{r} \right) ds \to \min.$$
(33)

Интегрирование ведётся по длине стержня (или стержней в случае конструкции). Выражение энергии соответствует формулам (28), (30):

$$\Pi = \int_{F} \left(\frac{1}{2} E \varepsilon_{z}^{2} + \frac{1}{3} E_{1} \varepsilon_{z}^{3} + \frac{1}{4} E_{2} \varepsilon_{z}^{4} + \frac{1}{2} \mu \gamma_{0}^{2} + \frac{1}{4} K_{4} \gamma_{0}^{4} \right) dF,$$

$$\varepsilon_{z} \equiv \varepsilon + \kappa_{1} x_{2} - \kappa_{2} x_{1}, \qquad \gamma_{0}^{2} = \kappa_{3}^{2} \left(x_{1}^{2} + x_{2}^{2} \right);$$
(34)

при наличии арматуры добавляются соответствующие слагаемые.

Для описания и аппроксимации конечных поворотов далее используется подход, предложенный в [14]. В соответствии с кинематикой модели без сдвига тензор поворота представляется в виде:

$$\mathbf{P} = \mathbf{P}_{2}(\psi, \mathbf{t}) \cdot \mathbf{P}_{1}(\mathbf{t}), \text{ rge } \mathbf{P}_{1} = \tilde{\mathbf{e}}_{i} \mathbf{e}_{i0}, \quad \mathbf{P}_{2} = \mathbf{I} \cos \psi + \mathbf{t} \times \mathbf{I} \sin \psi + \mathbf{tt} (1 - \cos \psi).$$
(35)

Первый поворот задаётся ортом касательной t: в каждой точке стержня выбирается какой-либо вектор \hat{e} (директор) и строится ортогональная тройка ортов

$$\tilde{\mathbf{e}}_1 = \frac{\hat{\mathbf{e}} \times \mathbf{r}'}{|\mathbf{e} \times \mathbf{r}'|}, \quad \tilde{\mathbf{e}}_2 = \mathbf{t} \times \tilde{\mathbf{e}}_1, \quad \tilde{\mathbf{e}}_3 = \mathbf{t}.$$
 (36)

Второй поворот в совершается на угол ψ вокруг касательной.

Базис в деформированном состоянии определяется равенствами

$$\mathbf{e}_1 = \tilde{\mathbf{e}}_1 \cos \psi + \tilde{\mathbf{e}}_2 \sin \psi, \quad \mathbf{e}_2 = -\tilde{\mathbf{e}}_1 \sin \psi + \tilde{\mathbf{e}}_2 \cos \psi, \quad \mathbf{e}_3 = \tilde{\mathbf{e}}_3 = \mathbf{t}.$$
(37)

Согласно теореме о сложении угловых скоростей

$$\mathbf{\Omega} = \mathbf{w} + \psi' \mathbf{t}, \qquad \mathbf{w} = \frac{1}{2} \tilde{\mathbf{e}}_k(s) \times \tilde{\mathbf{e}}'_k(s).$$
(38)

В соответствии с выражением (1) вычисляются необходимые компоненты вектора деформации к :

$$\Omega_{1} = w^{(1)} \cos \psi + w^{(2)} \sin \psi, \quad \Omega_{2} = -w^{(1)} \sin \psi + w^{(2)} \cos \psi, \quad \Omega_{3} = w^{(3)} + \psi';$$

$$w^{(i)} \equiv \tilde{\mathbf{e}}_{i} \cdot \mathbf{w} = \frac{1}{2} \tilde{\mathbf{e}}_{i} \times \tilde{\mathbf{e}}_{j} \cdot \tilde{\mathbf{e}}_{j}'; \quad \kappa_{i} = \Omega_{i} - \Omega_{0i}.$$
(39)

Величины Ω_{i0} , характеризующие отсчётную конфигурацию криволинейного и естественно закрученного стержня, должны быть вычислены предварительно. Осевая деформация є находится в соответствии с (9) по аппроксимации оси стержня. Таков алгоритм вычисления функционала $\Im[\mathbf{r}(s), \psi(s)]$, в котором старшие производные имеют второй порядок.

В численном решении задач статики воздействия растут пропорционально параметру нагрузки *f*, изменяющемуся по шагам. Для каждого шага итерационно ищется новое положение равновесия — локальный минимум функционала (33); начальным приближением является решение на предыдущем шаге. В ходе итерации минимизируемый функционал квадратично аппроксимируется вблизи текущей конфигурации — это вариант метода Ньютона.

Для дискретизации по пространству используем метод конечных элементов. Дуговая координата — s, в пределах элемента она меняется от -1 до 1. Радиус-вектор $\mathbf{r}(s)$ аппроксимируется кубическими полиномами, в каждом узле *i* имеется значение \mathbf{r}_i и производная \mathbf{r}'_i (элемент обладает 6-ю степенями свободы), что обеспечивает гладкость оси стержня. Чтобы избежать «опасной близости» директора к вектору касательной **t**, его значение $\hat{\mathbf{e}}_i$ задаётся в каждом узле; в пределах элемента $\hat{\mathbf{e}}$ аппроксимируется линейно. Угол ψ_i поворота сечения вокруг оси в начале каждой итерации полагается равным нулю, но является переменной величиной в процессе итерации (аппроксимируется линейно по узловым значениям — 7-я степень свободы узла).

Итерация состоит из следующих этапов:

- вычисляются вспомогательные геометрические характеристики в гауссовых точках элемента (первые и вторые производные характеристик деформации κ_i и ε по степеням свободы в узлах);

- первые и вторые производные энергии деформации элементов по узловым степеням свободы вычисляются интегрированием по гауссовым точкам;

- собираются глобальная матрица жёсткости (матрица вторых производных функционала Э) и столбец сил (столбец первых производных с обратным знаком);

- приращения узловых величин \mathbf{r}_i , \mathbf{r}'_i и ψ_i находятся из решения линейной системы;

- обновляется текущая конфигурация системы; при этом \mathbf{r}_i и \mathbf{r}'_i получают соответствующие приращения, а ψ_i используются для пересчёта направлений директоров $\hat{\mathbf{e}}_i$ (отслеживается вращение локального базиса в узле).

Кинематические граничные условия (шарнирные опоры и заделки в узлах) реализуются фиксацией соответствующих степеней свободы или их линейных комбинаций. Для обеспечения соединения различных стержней в функционал вносятся штрафные добавки. Удаётся избежать расстыковки узлов от накопления погрешностей в итерациях.

Разработанная вычислительная схема оказалась эффективной при анализе несущественными сдвиговыми деформациями. Заметим, конструкций с что программный комплекс ANSYS не содержит стержневых конечных элементов без сдвига. Отсутствие сдвига обеспечивается заданием большой жёсткости на соответствующих формах деформации со всеми вытекающими отсюда недостатками: большим числом степеней свободы, «овражностью» функционала и так далее. Решение модельных задач показало, что для достижения того же уровня точности, что даёт предлагаемый здесь алгоритм, ANSYS требуется вдвое большее количество конечных элементов.

5. Моделирование каркасов зданий

Приведем несколько примеров расчета модельных задач.

<u>Задача 1.</u> Построение определяющих уравнений стержня начнём с характеристик физической нелинейности бетона. В соответствии с рекомендациями работы [12], примем $E = 2, 7 \cdot 10^{10}$, $\sigma_1 = -1, 5 \cdot 10^7$, $\sigma_2 = 1, 4 \cdot 10^6$ (здесь и ниже используем единицы СИ). По формулам (22) находим коэффициенты кубической параболы (16): $E_1 \approx -1, 09 \cdot 10^{14}$, $E_2 \approx -2, 11 \cdot 10^{17}$. Значению коэффициента Пуассона v = 0, 2 соответствует $\mu \approx 1, 13 \cdot 10^{10}$, $K_4 \approx -1, 0 \cdot 10^{17}$.

Рассмотрим стержни с сечением, изображённым на рисунке 2, *а*. Возьмём следующие значения параметров: ширина сечения h = 0,06; расстояние между армирующими прутками w = 0,04; радиус прутков r = 0,001; модуль Юнга арматуры 2,1·10¹¹. По этим данным вычислим коэффициенты в (28), (30) и выражении энергии деформации (34).

Рис. 2. Сечение стержня (*a*), изгибающий момент как функция кривизны (б)

Представляет интерес чистый изгиб такого стержня. Из-за нелинейных перекрёстных эффектов предельный изгибающий момент, который может выдержать стержень, зависит от осевой деформации. Зависимость $M_1(\omega_1)$, в соответствии с (28), представлена на рисунке 2, δ для двух случаев: $\varepsilon = 0$ (пунктирная линия) и $Q_t = 0$ (сплошная линия) (считаем, что $\omega_2 = 0$). Сплошная линия имеет вертикальные асимптоты; при бо́льших значениях ω_1 решений уравнения $Q_t(\varepsilon) = 0$ не существует.

Отдельно была исследована устойчивость соответствующих конфигураций стержня: в квадратичном приближении П должна оставаться положительно определённой функцией четырёх мер деформации. При $Q_t = 0$ для рассматриваемых значений параметров имеем устойчивость в области монотонного роста $M_1(\omega_1)$, что не является непосредственным следствием выполнения неравенства $\partial^2 \Pi / \partial \omega_1^2 = \partial M_1 / \partial \omega_1 > 0$.

Задача 2. Рассмотрим модельную задачу изгиба и опрокидывания полукольца. Полукольцо расположено в плоскости xz и имеет единичный радиус; нижний конец стержня закреплён, а к верхнему приложена мёртвая (не зависящая от конфигурации стержня) сжимающая сила **F**. B случае физически линейного поведения $(E_1 = E_2 = K_4 = 0)$ полукольцо сначала будет изгибаться в плоскости, затем плоская форма потеряет устойчивость. Последовательность докритических и неплоских закритических конфигураций стержня для равномерно растущей нагрузки представлена на рисунке 3 в двух проекциях. Направление директора $\hat{\mathbf{e}}_i$ в узлах КЭ-модели показано на рисунке стрелками; более крупная стрелка на верхнем конце отмечает направление силы **F**. Даже при малом количестве элементов и больших шагах роста нагрузки итерационный процесс устойчиво сходится и решение имеет высокую точность.

Несовершенство, требуемое для получения «опрокинутых» конфигураций, присутствует в определении сжимающей силы: $\mathbf{F} = -f \mathbf{k} + \alpha f \mathbf{j}$. Сила растёт пропорционально параметру нагрузки, параметр несовершенства α задаёт её отклонение от вертикали. Перемещения конца стержня с ростом нагрузки для случаев $\alpha = 0,01; 0,04; 0,16$ представлены на рисунке 4, *a*. Для физически линейной модели имеем кривые, типичные для системы с бифуркацией. На рисунке 4, *б* показана зависимость предельной нагрузки f_{max} в физически нелинейной модели от параметра несовершенства. При $\alpha = 0$ имеем $f_{\text{max}} \approx 89,7$, что соответствует предельному значению изгибающего момента M_{max} в середине кольца.

Рис. 3. Опрокидывание упругого полукольца; деформированные конфигурации в двух проекциях

Рис. 4. Перемещение конца стержня из плоскости *xz* с ростом нагрузки в физически линейной модели (*a*), предельная нагрузка при изменении параметра несовершенства в физически нелинейной модели (б)

<u>Задача 3.</u> Деформированное состояние стержневого каркаса высотного здания переменной этажности под действием собственного веса и ветровых нагрузок представлено в трёх проекциях на рисунке 5. «Элементарная ячейка» конструкции в осях *хуг* имеет размеры $4 \times 4 \times 8$; при объёмных плотностях бетона и арматуры, равных соответственно 2400 и 7800, собственный вес каркаса составляет приблизительно 8,6 тонн. Ветровая нагрузка в направлении оси *х* равномерно распределена по соответствующей стене здания с поверхностной плотностью *f*; деформированные конфигурации стержневого каркаса на рисунке 5 отвечают физически линейной модели с параметром нагрузки *f* = 0,63 (постоянный вес от *f* не зависит).

Максимальное перемещение в модели u как функция давления ветра f (кривая «нагрузка-прогиб») представлено на рисунке 6, a; пунктирные линии отвечают модели без учёта весовых нагрузок. Увеличенный участок в области малых деформаций (Рис. 6, δ) позволяет сравнить поведение физически линейной (тонкие линии) и физически нелинейной (полужирные линии) моделей. Локальная потеря устойчивости в физически линейной модели наступает при $f_{\text{max}}^{(lin)} \approx 0,63$. Учёт нелинейных свойств

Рис. 5. Отсчётная и деформированная конфигурации стержневого каркаса высотного здания под действием весовых и ветровых нагрузок.

Рис. 6. Кривые «нагрузка-прогиб» для каркаса здания под действием растущей ветровой нагрузки

бетона снижает расчётное ветровое давление, выдерживаемое каркасом, до $f_{\max}^{(nl)} \approx 0,16$; в этом случае перекрёстная связь сжатия и изгиба в сечении приводит к некоторому росту жёсткости конструкции при малых деформациях. Предельная ветровая нагрузка мала, как и статический запас устойчивости: при увеличении линейных размеров каркаса на 20% (с теми же параметрами сечения стержней) устойчивость теряется уже под действием собственного веса.

Представленные примеры являются лишь иллюстрацией разработанных теории и методики расчета. Они могут найти применение при проектировании реальных объектов.

Ю.М. Ветюков благодарит Австрийский научный фонд (FWF Translational Project L441-N41 "Sensor Systems for Structural and Health Monitoring") за оказанную финансовую поддержку.

Литература

- 1. Бердичевский В.Л. Вариационные принципы механики сплошной среды. М.: Наука, 1983. 448 с.
- 2. Елисеев В.В. Механика упругих тел. Изд-во СПбГПУ, 2003. 336 с.
- 3. Елисеев В.В. К нелинейной динамике упругих стержней // ПММ. 1988. Т52. Вып.4. С. 635 641.
- 4. *Елисеев В.В., Орлов С.Г.* Асимптотическое расщепление в пространственной задаче линейной пругости для удлиненных тел со структурой // ПММ. 1999. Т.63, Вып. 1. С. 93–101.
- 5. Попов Е.П. Теория и расчёт гибких упругих стержней. М.: Наука, 1986. 296 с.
- 6. Шулькин Ю.Б. Теория упругих стержневых конструкций. М.: Наука, 1984. 272 с.
- 7. Antman St. Nonlinear problems of elasticity. Springer, 1995. 751 p.
- 8. *Antman St.* The theory of rods // Handbuch Physik, Springer. 1972. B. 6a. P. 641-703.
- 9. *Green A.E., Naghdi P.M., Wenner M.L.* On the theory of rods // Proc. Roy. Soc. 1974. A. 337, N. 1611. P. 451-507.
- 10. Работнов Ю.Н. Механика деформируемого твёрдого тела. М.: Наука, 1988. 711 с.
- 11. Байков В.Н., Хампе Э.Х., Рауэ Э. Проектирование железобетонных тонкостенных пространственных конструкций. М.: Стройиздат, 1990. 232 с.
- 12. Карпенко Н.И. Общие модели механики железобетона. М.: Стройиздат, 1996. 416 с.
- Лин Т.И. Проектирование предварительно напряжённых железобетонных конструкций. М.: Госстройиздат, 1960. – 438 с.
- Krommer M., Vetyukov Yu. Adaptive sensing of kinematic entities in the vicinity of a time-dependent geometrically nonlinear pre-deformed state // Int. J. of Solids and Structures – 2009. – V. 46, N. 17. – P. 3313-3320.

Поступила в редакцию 20.01.10

Сведения об авторах:

Ветюков Юрий Михайлович, ктн, доц., Johannes Kepler University Linz, Altenberger Str. 69, A-4040 Linz, Austria; E-mail: vetyukov@mail.ru

Елисеев Владимир Васильевич, дфмн, проф., Санкт-Петербургский государственный политехнический университет, 195251, Санкт-Петербург, Политехническая ул., д. 29; E-mail: yeliseyev@inbox.ru