УДК 539.3

ВЕРИФИКАЦИЯ КОНЕЧНО-ЭЛЕМЕНТНОГО РЕШЕНИЯ ТРЕХМЕРНЫХ НЕСТАЦИОНАРНЫХ ЗАДАЧ УПРУГОПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ, УСТОЙЧИВОСТИ И ЗАКРИТИЧЕСКОГО ПОВЕДЕНИЯ ОБОЛОЧЕК

А.А. Артемьева, В.Г. Баженов, А.И. Кибец, П.В. Лаптев, Д.В. Шошин

Научно-исследовательский институт механики Нижегородского государственного университета им. Н.И. Лобачевского, Нижний Новгород, Россия

Приводится конечно-элементная методика анализа в трехмерной постановке квазистатических и динамических процессов упругопластического деформирования, потери устойчивости и закритического поведения конструкций, включающих тонкостенные оболочки. Эффективность методики подтверждается результатами верификационных расчетов.

Ключевые слова: метод конечных элементов, верификация, упругопластичность, нестационарные задачи, оболочки

VERIFICATION OF THE FINITE-ELEMENT SOLUTION OF 3D NON-STATIONARY PROBLEMS OF ELASTO-PLASTIC DEFORMATION, STABILITY AND SUPERCRITICAL BEHAVIOR OF SHELLS

A.A. Artemjeva, V.G. Bazhenov, A.I. Kibetz, P.V. Laptev and D.V. Shoshin

Research Institute of Mechanics, Nizhny Novgorod Lobatchevsky State University, Nizhny Novgorod, Russia

FEM technique is used to analyze the quasi-static and dynamic processes of elasto-plastic deformation, stability loss and supercritical behavior of thin-walled shell structures in three-dimensional formulation. The effectiveness of the proposed approach has been verified in numerical experiments.

Key words: finite-element method, verification, elasto-plasticity, non-stationary problems, shells

1. Введение

Несмотря на накопленный положительный опыт [1-4], границы применимости метода конечных элементов (МКЭ) для исследования геометрически и физически нелинейных задач динамики и устойчивости оболочечных конструкций еще недостаточно изучены. Серьезной проблемой, с которой приходиться сталкиваться при построении конечных элементов (КЭ), является эффект так называемого «запирания». Суть его заключается в том, что в процессе деформирования КЭ демонстрирует сильно завышенную жесткость, в результате чего невозможно получить необходимую точность решения при измельчении сетки. В ряде случаев развиваются моды нулевой энергии (неустойчивость типа «песочные часы»). В силу отмеченных недостатков численных схем представляются актуальными экспериментальные и теоретические исследования, позволяющие верифицировать существующие и разрабатываемые методы решения рассматриваемого класса задач. Ниже приводится конечно-элементная методы решения оболочки, и верификационные тесты для оценки ее достоверности.

© А.А. Артемьева, В.Г. Баженов, А.И. Кибец, П.В. Лаптев, Д.В. Шошин, 2010

2. Определяющая система уравнений

Для описания движения деформируемой среды применяется текущая лагранжева формулировка [5, 6]. Уравнение движения выводится из баланса виртуальных мощностей:

$$\int_{\Omega} \sigma_{ij} \delta \dot{\varepsilon}_{ij} dV + \int_{\Omega} \rho \ddot{U}_i \delta \dot{U}_i dV = \int_{\Gamma_p} P_i \delta \dot{U}_i d\gamma + \int_{\Gamma_q} P_i^q \delta \dot{U}_i d\gamma \quad (i, j = \overline{1, 3}),$$
(1)

где \dot{U}_i — компоненты вектора скорости перемещения в общей декартовой системе координат X; σ_{ii} , $\dot{\epsilon}_{ij}$ — компоненты тензоров напряжений Коши и скоростей деформаций (симметричной части градиента скорости перемещений); р — плотность; P_i^q контактное давление; P_i — распределенная нагрузка; Ω — исследуемая область; Γ_q поверхность контакта; Γ_p — зона действия внешнего давления; $\delta \dot{\varepsilon}_{ij}$, $\delta \dot{U}_i$ — вариации $\dot{\varepsilon}_{ij}$, \dot{U}_i (на поверхности с заданными кинематическими граничными условиями $\delta \dot{U}_i = 0$); частную времени точка над символом означает производную по t: по повторяющимся индексам ведется суммирование. Компоненты тензора скорости деформаций определяются в метрике текущего состояния:

$$\begin{aligned} \dot{\varepsilon}_{ij} &= (\dot{U}_{i,j} + \dot{U}_{j,i})/2 \qquad (i, j = \overline{1, 3}), \\ \dot{U}_{i,j} &= \partial \dot{U}_i / \partial X_j, \\ X_i &= X_i \Big|_{t=0} + \int_0^t \dot{U}_i dt. \end{aligned}$$

$$(2)$$

Компоненты тензора напряжений находятся из соотношений теории течения с изотропным упрочнением:

$$\begin{aligned} \sigma'_{ij} &= \sigma_{ij} + \sigma^{\nu} \delta_{ij}, & \dot{\sigma}^{\nu} = -3K\dot{\epsilon}^{\nu}, & \dot{\epsilon}^{\nu} = \dot{\epsilon}_{ii} / 3, \\ \dot{\epsilon}'^{e}_{ij} &= \dot{\epsilon}_{ij} - \dot{\epsilon}^{\nu} \delta_{ij} - \dot{\epsilon}^{p}_{ij}, & \dot{\epsilon}^{p}_{ii} = 0, & D_{J} \sigma'_{ij} = 2G\dot{\epsilon}'^{e}_{ij}, \\ \dot{\epsilon}^{p}_{ij} &= \dot{\lambda} \sigma'_{ij}, & \sigma'_{ij} \sigma'_{ij} = 2/3\sigma^{2}_{T}(\chi), & \chi = \sqrt{2/3} \int_{0}^{t} \sqrt{\dot{\epsilon}^{p}_{ij} \dot{\epsilon}^{p}_{ij}} dt. \end{aligned}$$
(3)

Здесь σ'_{ij} , $\dot{\epsilon}'_{ij}$, σ^{v} , $\dot{\epsilon}^{v}$ — девиаторные и шаровые компоненты тензоров напряжения и скоростей деформаций; $\dot{\epsilon}^{p}_{ij}$ — скорости пластических деформаций; G, K — модули сдвига и объемного сжатия; δ_{ij} — символы Кронекера; D_{j} — производная Яуманна: $D_{j}\sigma'_{ij} = \dot{\sigma}'_{ij} - \sigma'_{ik}W_{kj} - \sigma'_{jk}W_{ik}$, где $W_{ij} = (\dot{U}_{i,j} - \dot{U}_{j,i})/2$; σ_{T} — динамический предел текучести; $\dot{\lambda}$ — параметр, тождественно равный нулю при упругом деформировании и определяемый при упругопластическом деформировании из условия прохождения мгновенной поверхности текучести через конец вектора догрузки. На контактной поверхности формулируются условия непроникания по нормали и свободного скольжения вдоль касательной к поверхности контакта:

$$\dot{U}_{n}^{1} = \dot{U}_{n}^{2}, \qquad q_{n}^{1} = -q_{n}^{2}, \qquad q_{i}^{1} = q_{i}^{2} = 0, \qquad i = \tau_{1}, \tau_{2}.$$
 (4)

Связь контактирующих подобластей полагается односторонней, то есть, возможен отрыв поверхностей друг от друга и повторное вступление в контакт. Система уравнений (1)–(4) дополняется начальными условиями и кинематическими граничными условиями.

3. Метод решения

Для дискретизации определяющей системы уравнений по пространственным переменным применяется метод конечных элементов, а дискретизация по времени базируется на явной конечно-разностной схеме типа «крест» [7]. Деформируемая конструкция заменяется лагранжевой сеткой, состоящей из 8-узловых конечных элементов. В узлах сетки определяются ускорения $\{U\}$, скорости $\{U\}$ и перемещения $\{U\}$ в общей системе координат $\{X\} = \{X_1X_2X_3\}^T$. Конечный элемент с помощью полилинейного изопараметрического преобразования отображается на куб $-1 \le \xi_i \le 1$ $(i = \overline{1, 3})$:

$$X_{i} = \sum_{k=1}^{8} X_{i}^{k} N_{k} (\xi_{1} \xi_{2} \xi_{3}), \quad N_{k} = (1 + \xi_{1} / \xi_{1}^{k}) (1 + \xi_{2} / \xi_{2}^{k}) (1 + \xi_{3} / \xi_{3}^{k}) / 8,$$
(5)

где X_i^k , ξ_i^k — координаты узлов в базисах $\{X\}$, $\{\xi\}$; N_k — функции формы. Компоненты скорости деформаций $\dot{\varepsilon}_{ii}$ аппроксимируются в КЭ линейными функциями:

$$\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij}^{0} + \alpha_1 \dot{\varepsilon}_{ij}^{1} \xi_1 + \alpha_2 \dot{\varepsilon}_{ij}^{2} \xi_2 + \alpha_3 \dot{\varepsilon}_{ij}^{3} \xi_3.$$
(6)

По аналогии с теорией оболочек $\dot{\varepsilon}_{ij}^0$ — значения компонент скорости деформаций в центре КЭ, далее будут называться безмоментными составляющими, а их градиенты $\dot{\varepsilon}_{ij}^k = \partial \dot{\varepsilon}_{ij} / \partial \xi_k = \text{const}$ — моментными составляющими. Чтобы не завышать сдвиговую жесткость элемента, в (6) учитываются только компоненты $\dot{\varepsilon}_{ij}^k$, соответствующие изгибающим и крутящим моментам в теории оболочек типа Тимошенко [8]. Весовые коэффициенты α_k вводятся для регулирования влияния моментных составляющих скорости деформаций $\dot{\varepsilon}_{ij}^k$ на численное решение ($0 < \alpha_k \le 1$, $k = \overline{1, 3}$). На основе (6) разработано семейство конечных элементов для моделирования сложных составных конструкций.

<u>Тип A — конечный элемент сплошной среды.</u> Наиболее простой вариант КЭ получается при $\alpha_k \ll 1$, $k = \overline{1, 3}$. В этом случае пластические свойства материала учитываются при вычислении напряжений в центре КЭ, а связь $\dot{\varepsilon}_{ij}^k$ и соответствующих им моментных составляющих скоростей напряжений полагается линейно упругой. Как показали тестовые расчеты, при $\alpha_k \approx 0,01$ введение $\dot{\varepsilon}_{ij}^k$ в численную схему позволяет подавить моды с нулевой энергией и сохранить точность методов [9, 10]. Элементы типа «А» можно применять для исследования динамики массивных тел и тонкостенных конструкций. Однако в пластинах и оболочках для достижения приемлемой точности решения сетка расчетной области должна иметь не менее четырех элементов по толщине, что многократно повышает затраты вычислительных ресурсов и оправдано только при интенсивных локальных воздействиях.

<u>Тип В — конечный элемент оболочки.</u> Предполагается, что в тонкостенных элементах конструкций поперечные сдвиговые и изгибные деформации малы, а смещения и углы поворота поперечного сечения произвольны. В каждом конечном элементе вводится локальный базис $\{x\} = \{x_1 x_2 x_3\}^T$ (ось x_3 направлена по нормали к срединной поверхности), отслеживающий вращение КЭ как жесткого целого [1, 11]. При этих условиях можно считать, что ось ξ_3 совпадает с x_3 и $\alpha_3 = 1$, $\alpha_1, \alpha_2 << 1$. Конечный элемент разбивается вдоль ξ_3 на ряд подслоев. Напряжения в подслоях определяются в точках $\xi_1 = \xi_2 = 0$ из уравнений состояния, исходя из линейного оболочки: $\dot{\varepsilon}_{ii} = \dot{\varepsilon}_{ii}^0 + \dot{\varepsilon}_{ii}^3 \xi_3$. скорости деформаций по толщине распределения Для улучшения сходимости численного решения при дискретизации тонкостенных конструкций трехмерными конечными элементами вводится дополнительная гипотеза [12]: компонента тензора напряжений, направленная по нормали к срединной поверхности, не меняется по толщине оболочки. Моментные составляющие $\dot{\epsilon}_{ii}^1, \dot{\epsilon}_{ii}^2$ описывающие изменение скорости деформаций в срединной поверхности КЭ оболочки, применяются для регуляризации численного решения (подавления мод нулевой энергии) и определяются как в КЭ сплошной среды.

<u>Тип С — конечный элемент оболочки.</u> Там, где в процессе деформирования возможны большие локальные формоизменения, целесообразно все коэффициенты α_k в (6) положить равными единице. В направлении нормали к срединной поверхности (ось ξ_3) конечный элемент разбивается на ряд подслоев. В отличие от предыдущего КЭ, вычисление скоростей деформаций и напряжений осуществляется не в центрах подслоев, где $\xi_1 = \xi_2 = 0$, а в квадратурных точках Гаусса. Для численного интегрирования в уравнении баланса виртуальных мощностей (1) применяются формулы, используемые в работе [3].

Мощность виртуальной работы в каждом конечном элементе выражается через матрицу масс, узловые ускорения и статически эквивалентные узловые силы. После замены интегрирования по области Ω суммированием по элементам получается дискретный аналог уравнений движения (1):

$$[M]\{\ddot{U}\} = \{F\},\tag{7}$$

где [M] — диагональная матрица масс; $\{\ddot{U}\}, \{F\}$ — векторы, составленные из ускорений узлов КЭ-сетки и результирующих узловых сил в общей системе координат. Система обыкновенных дифференциальных уравнений (7) интегрируется по явной конечно-разностной схеме типа «крест».

Изложенная методика реализована в рамках вычислительного комплекса «Динамика-3» [13]. Далее проводится ее верификация на ряде тестовых задач.

4. Верификационные расчеты

<u>Задача 1.</u> Численно и экспериментально исследован процесс неосесимметричного выпучивания стальной цилиндрической оболочки ($h = 10^{-3}$ м, L/h = 92, R/h = 14,5) с массивными оголовками (Рис. 1, *a*) при осевом сжатии в квазистатическом режиме нагружения. Материал образца — сталь X18H10T (модуль упругости E = 210 ГПа, коэффициент Пуассона $\mu = 0,3$, плотность $\rho = 7800$ кг/м³), диаграмма деформирования которой приведена на рисунке 1, δ .

a

Рис. 1. Исследуемый образец (*a*) и диаграмма деформирования стали X18H10T (б)

Известно [14-16], что выпучивание металлических цилиндрических оболочек при осевом квазистатическом и динамическом сжатии происходит по осесимметричным или неосесимметричным формам. Реализация той или иной формы волнообразования зависит от скорости удара, соотношения масс ударяющего тела и оболочки, геометрии и материала оболочки. Одним из главных параметров, определяющих форму потери устойчивости оболочек средней длины, является отношение радиуса кривизны срединной поверхности к толщине оболочки *R/h*. Выпучивание достаточно толстых оболочек происходит с образованием складок вблизи торцов и сопровождается пластическим течением. Ниже приводятся результаты верификационных расчетов, позволяющие оценить применимость разработанных конечных элементов в этом классе задач.

В силу симметрии в расчетах рассматривалась четвертая часть оболочки, которая покрывалась сеткой из 920 конечных оболочечных элементов типа «В» или «С» (92 КЭ вдоль образующей и 10 КЭ в направлении угла поворота). Массивные оголовки моделировались конечными элементами типа «А». Результаты численного решения сравнивались с экспериментальными данными, полученными Казаковым Д.А. (НИИ механики Нижегородского университета, Н. Новгород) на установке УМЭ-10-ТМ. Процесс выпучивания происходил следующим образом. Сначала оболочка, за исключением краев, равномерно расширялась. Затем у ее торцов намечались осесимметричные складки, а прогибы в средней части фиксировались. Дальнейший рост

нагрузки вызывал вначале одновременное увеличение амплитуды обеих складок. Затем рост одной из них прекращался, нагрузка достигала своего предельного значения, и наблюдалась несимметрия прогибов на растущей складке и рядом с ней. После начала трансформации осевые усилия на торце начинали уменьшаться. За складкой образовывалась вмятина, и поперечное сечение оболочки в этой области приобретало эллиптическую форму.

При исследовании устойчивости оболочки по неосесимметричной форме в расчетах задавались несовершенства в виде начальной погиби: $w = A\cos(\beta)\sin(2\pi x/l)$. Здесь A = 0,1 h, h — толщина оболочки, $0 \le \beta \le 90^\circ$ — координата по углу поворота, $0 \le x \le (l/2)$ — координата вдоль образующей, l — длина выпучины, определяемая из осесимметричного расчета. Сжатие оболочки проводилось до величины осадки $\Delta L = 8h$.

На закритической стадии процесса выпучивания учитывалось контактное взаимодействие при замыкании гофров. В конечных элементах оболочки типа «В» при $\alpha_1 = \alpha_2 = 0,01$ в случае больших изгибных деформаций в зоне гофров развиваются моды нулевой энергии. На рисунке 2 изображена остаточная форма трубчатого образца, полученная в эксперименте (Рис. 2, *a*) и при численном решении задачи (Рис. 2, *б*) с использованием конечного элемента оболочки типа «С», который обеспечивает устойчивость счета и приемлемую точность расчетов.

Как показали исследования, в процессе выпучивания оболочки имеют место упругая разгрузка и сложное нагружение. Момент начала разгрузки и ее продолжительность на срединном слое заметно отличаются от соответствующих величин на лицевых поверхностях оболочек. Сложное нагружение наиболее существенно проявляется в наружных волокнах. Анализ траекторий деформирования позволяет классифицировать их как траектории малой и средней кривизны. Большая кривизна наблюдается только на участках упругих разгрузок.

На рисунке 3 приведены графики изменения радиальных перемещений W в точках, отмеченных на рисунке 2, δ цифрами I, II, а также осевых усилий F в зоне закрепления

Рис. 2. Остаточная форма образца, полученная в эксперименте (a), в расчете (b)

Рис. 3. Графики изменения радиальных перемещений и осевых усилий *F* в зависимости от сближения торцов оболочки

оболочки в зависимости от сближения торцов. Пунктирные линии отвечают экспериментальным данным, сплошные — расчету по изложенной методике с применением КЭ типа «С», штриховые — расчету с помощью пакета программ ANSYS). Расчетные и экспериментальные значения интегральных параметров процесса (прогибов и усилий) хорошо согласуются между собой. Как следует из графиков, неосесимметричная форма потери устойчивости развивается с момента, когда осесимметричная выпучина начинает превышать толщину оболочки.

Для рассмотренного выше цилиндрического образца также моделировалась задача ударного сжатия. Результаты расчета сравнивались с данными натурного эксперимента, полученными Деменко П.В. и Лаптевым П.В (НИИ механики Нижегородского университета, Н. Новгород) на установке РСГ–60 [17]. Одним из торцов образец свободно опирался на мерный стержень, по другому торцу бил ударник массой 5,4 кг с начальной скоростью $V_0 = 11,93$ м/с. Ударник и мерный стержень были выполнены из стали и в расчетах предполагались упругими.

На рисунке 4, *а* и б представлены остаточные прогибы вдоль образующей рабочей части. Точками обозначены экспериментальные значения амплитуд выпучин. Величина осадки образца составляла: в расчете — 11,5 *h*, в эксперименте — 12 *h*. Результаты численного моделирования хорошо согласуются с экспериментальными данными, несмотря на большие формоизменения и сложный характер нагружения.

 $(h = 1.5 \cdot 10^{-3} \text{ m}),$ Задача 2. Составная стальная оболочка коробчатого профиля изображенная на рисунке 5, деформировалась при соударении с плитой, имеющей массу 500 кг и начальную скорость 5 м/с. На правом торце конструкции задавались условия неподвижного защемления, на левом торце — условия контактного взаимодействия Механические характеристики материала с плитой. равнялись: модуль упругости — 1,99355 ГПа; коэффициент Пуассона — 0,3; плотность — 7800 кг/м³; предел текучести — 185,4 МПа; модуль линейного изотропного упрочнения — 540 МПа. При решении задачи конструкция разбивалась на 1536 конечных элементов. Результаты решения представлены на рисунках 6, 7 в виде графика зависимости сжимающей силы F от продольного смещения левого торца оболочки и формы оболочки на момент времени 16 мс.

Рис. 4. Остаточные прогибы вдоль образующей цилиндрической оболочки в сечении, проходящем через точки I (*a*) и II, III (δ) (*s* – длина дуги вдоль образующей цилиндрической оболочки $0 \le s \le L$)

Рис. 5. Расчетная область (а) и конечно-элементная сетка (б) для задачи 2

Рис. 6. Зависимость контактной силы от продольного смещения левого торца оболочки

Рис. 7. Форма оболочки на момент времени 16 мс

Сплошной и пунктирной линиями на рисунке 6 отмечены результаты, полученные на основе оболочечного конечного элемента типа «С» и 4-узлового конечного элемента оболочки [18] соответственно. Расхождение этих графиков незначительно.

5. Заключение

Результаты верификационных расчетов подтвердили эффективность разработанных моментных конечных элементов, предназначенных для математического моделирования нестационарных задач динамического деформирования тонкостенных конструкций при больших формоизменениях в условиях сложного нагружения, характерного для упругопластического выпучивания оболочек.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проекты № 08-08-00560_а, 08-01-00500_а, 09-08-97034_р_Поволжье_а) и Совета по грантам Президента РФ для ведущих научных школ (грант НШ-3367.2008.8).

Литература

- 1. Голованов А.И., Тюленева О.Н., Шигабутдинов А.Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. М.: ФИЗМАТЛИТ, 2006. 391 с.
- 2. *Belytschko T., Liu W.K., Moran B.* Nonlinear finite elements for continua and structures. New York: John Wiley & Sons, 2000. 600 p.
- 3. Bathe K.-Y. Finite element procedures. New Jersey: Upper Saddle River «Prentice Hall», 1996. 1037p.
- 4. Zienkievicz O.C., Taylor R.L. The finite element method. Oxford: Butterworth-Heinemann, 2000. V. 1. 689 p.; V. 2. 459 p.
- 5. Поздеев А.А., Трусов П.В., Няшин Ю.И. Большие упругопластические деформации: теория, алгоритмы, приложения. М.: Наука, 1986. 232 с.
- 6. *Коробейников С.Н.* Нелинейное деформирование твердых тел. Новосибирск: Изд-во СО РАН, 2000. 262 с.
- 7. Баженов В.Г., Кибец А.И., Цветкова И.Н. Численное моделирование нестационарных процессов ударного взаимодействия деформируемых элементов конструкций // Проблемы машиностроения и надежности машин, 1995. – № 2. – С. 20-26.
- 8. Вольмир А.С. Нелинейная динамика пластин и оболочек. М.: Наука, 1972. 432 с.
- 9. *Flanagan D.P., Belytschko T.* A Uniform strain hexahedron and quadrilateral with orthogonal hourglass control // Int. J. Numer. Meth. Eng., 1981. V. 17. P. 679-706.
- 10. *Уилкинс М., Френч С., Сорем М.* Конечно-разностная схема для решения задач, зависящих от трех пространственных координат и времени // Численные методы в механике жидкостей. М.: Мир, 1973. С. 115-119.
- 11. Коробейников С.Н., Шутов А.В. Выбор отсчетной поверхности в уравнениях пластин и оболочек // Вычислительные технологии, 2003. Т. 8, № 6. С. 38-59.
- 12. Метод конечных элементов в механике твердых тел / Под ред. А.С. Сахарова и И. Альтенбаха. Киев: Вища школа; Лейпциг: ФЕБ Фахбухферлаг, 1982. 480 с.
- Программный продукт «Пакет прикладных программ для решения трехмерных задач нестационарного деформирования конструкций, включающих массивные тела и оболочки, «Динамика-3» (ППП «Динамика 3») : Сертификат соответствия Госстандарта России № РОСС RU.ME20.H00338 / 2000.
- 14. Баженов В.Г., Ломунов В.К. Экспериментально-теоретическое исследование упругопластического выпучивания цилиндрических оболочек при осевом ударе // Прикладная механика, 1983. Т. 19, № 6. С. 63-69.
- 15. Абакумов А.И., Квасков Г.А., Новиков С.А., Синицын В.А., Учаев А.А. Исследование упругопластического деформирования цилиндрических оболочек при осевом ударе // ПМТФ, 1988. – № 3. – С. 150-153.
- 16. *Коробейников С.Н.* Численное решение уравнений с особенностями деформирования упругопластических оболочек вращения // Вычислительные технологии, 2001. Т. 6, № 5. С. 39-59.
- Деменко П.В. Установка для динамических испытаний структурно-неоднородных материалов на основе разрезного стержня Гопкинсона диаметром 60 мм // Проблемы прочности и пластичности. – Н. Новгород, 2001. – Вып. 63. – С. 186-190.
- 18. Zeng Q., Combescure A. A new one-point quadrature, general non-linear quadrilateral shell element with physical stabilization // Int. J. Numer. Meth. Eng., 1998. N. 42. P. 1307-1338.

Поступила в редакцию 23.11.09

Сведения об авторах

Артемьева Анастасия Анатольевна, мнс, Научно-исследовательский институт механики Нижегородского государственного университета им. Н.И.Лобачевского» (НИИ механики ННГУ), Россия, 603950, Н.Новгород, ГСП-1000, пр. Гагарина,23, корп.6; E-mail: aranan@mail.ru

Баженов Валентин Георгиевич, дфмн, проф., зав.лаб., НИИ механики ННГУ; E-mail: bazhenov@mech.unn.ru Кибец Александр Иванович, дфмн, гнс, НИИ механики ННГУ; E -mail: kibec@dk.mech.unn.ru Лаптев Павел Владимирович, кфмн, снс, НИИ механики ННГУ; E -mail: mechanik@bk.ru Шошин Дмитрий Викторович, мнс, НИИ механики ННГУ; E -mail: Shoshin86@mail.ru