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Nanocrystalline metals consist of two distinct phases: the crystalline phase, namely grains, and the intercrystalline phase, which
includes grain boundaries, triple junctions, and quadruple nodes. Weakening of elasticity in the intercrystalline phase of nanocrystalline
metals, especially in grain boundaries, causes a decrease in the overall elastic modulus. Consequently, studying the elastic behavior and
calculating the elasticity of grain boundaries are critical to the understanding of nanocrystalline metals. The purpose of this research
is to model the elasticity of grain boundaries in nanocrystalline metals and calculate it. For this purpose, five different metal samples
with different crystalline structures are considered. For each sample, three representative volume elements (RVEs) with different
grain sizes and constant grain boundary thickness are modeled. The behavior of the crystalline phase is assumed to be elastic with cubic
symmetry, while the behavior of grain boundaries is assumed to be elastically isotropic. Uniaxial tension is then simulated using a finite
element analysis to calculate the Young’s modulus of the RVEs. The weakening coefficient for grain boundaries is obtained through
this analysis. To verify the validity of this coefficient, the Young’s modulus of the simulated RVEs is compared with the Young’s
modulus extracted frommolecular dynamics simulation and experiments reported in the literature.
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1. Introduction

Investigating the behavior of materials is one of the most significant issues in various engineering disciplines,
especially in the field of mechanics. Over time, considerable efforts are devoted to achieving deeper comprehension
of material behavior. Microscopic investigation of material involves considering materials as crystalline structures,
and evaluation of material behavior undertaken through their microstructures [1]. A grouping of crystalline structures
that exhibit uniform orientation is referred to as a grain, and the interface between these grains, which leads to their
separation, is termed grain boundaries [2]. Nowadays, extensive research is conducted on the microstructure of materials
and their crystal structures. It is shown that changes in the behavior and properties of materials are due to changes in their
microstructures [3, 4]. The elasticity of grain boundaries is considerably weaker in comparison to grains. The mechanical
properties of metals and alloys, particularly at the nanoscale and under microstructural examinations, are profoundly
influenced by the size of grains and a constant grain boundary thickness [5, 6]. Hence, in nanocrystalline metals, the
grain size exerts a significant influence on the majority of their mechanical properties. Due to the significant effect of
grain boundaries on the mechanical properties of crystalline metals, and because studying the microstructure of these
metals is critical for understanding and predicting their behavior, investigating the changes in grain boundaries’ elastic
properties is of considerable importance. In order to design nanocrystalline metals and alloys with optimal and tunable
mechanical properties, it is necessary and important to know the dependence of these metals and alloys’ properties
on their grain size and grain boundary thickness. The ability to quantify the relationship between the dependence of
the mechanical properties of metals on their grain sizes and the grain boundary of the microstructure leads to better
manufacturing, processing, and improving the mechanical properties. Hence, the main objective of this research is to
model grain boundaries in nanocrystalline metals and calculate their elastic properties using FE analysis.

Zheng et al. [7] introduced a relationship based on the strain energy, which is a function of the difference in vacancy
concentration between the stressed and stress-free states, the constant coefficient of the geometric factor, the applied stress,
and the free space energy with the elastic coefficient of the grain boundary. As an example, they used this method to obtain
the elastic properties of the grains of the allotropic polycrystalline alpha-iron. Zhu et al. [8] investigated the effect of surface
grain boundary energy and non-local boundary reactions on Young’s modulus of copper nanocrystals based on continuum
elasticity theory [9, 10]. By combining interfacial energy and grain strain energy, they obtained the effective Young’s
modulus of grains. By comparison with experimental results, the accuracy of the obtained results was demonstrated. The
results of this analysis indicate that with an increase in grain size, the Young’s modulus of nanocrystals also increases.
Then, they used the law of mixtures and presented the ratio of the representative volume element (RVE) Young’s modulus
of nanocrystals to the Young’s modulus of the crystal alone based solely on the grain size. Yeheskel et al. [11] applied the
ultrasonic wave method. The basis of this investigation was the analysis and measurement of the density and velocity of
soundwaves. It was observed that the low elasticmodulus ofmagnesiumnanocrystalswas due to the lowdensity and elastic
modulus of its boundaries. Therefore, basedon the experiments conducted,with adecrease ingrain size, the effective elastic
modulus also decreased. Kim et al. [12] investigated the elastic properties of a polycrystalline metal based on continuum
mechanics theories presented by [13, 14]. This theory elucidated the fourth-order equilibrium equation that related the
displacement field and connections in the grain boundaries. They demonstrated the influence of longitudinal scale at the
nanoscale, showing that with its increase, the effective Young’s modulus decreased and the Poisson’s ratio increased. The
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rate of change of the elastic modulus and the effective Poisson’s ratio decreasedwith aminimal decrease in the longitudinal
scale of the grain boundaries. TheFEM(Finite ElementMethod)was employed tomodel the elastic coefficients of the grain
boundaries and it demonstrated that the size of the elastic modulus of nanocrystalline metals is directly related to the grain
size. They examined this result for coppermetal with different grain sizes. Xu andDavila [6] investigated the effect of grain
size on the elastic properties of nanocrystalline aluminum using themolecular dynamics (MD)method. Simulation results
indicated that the elastic properties of nanocrystalline aluminumwere non-sensitively correlated with grain size when it
exceeded 13 nm. However, for grain sizes smaller than 13 nm, there was a higher sensitivity of the elastic modulus to grain
size. Initially, with a reduction in grain size, the elastic modulus also decreased, and, when the grain size reached 9 nm,
further reduction in grain size led to amore pronounced decrease in the elasticmodulus. Latapie and Farkas [3] investigated
the effect of grain size on the elastic properties of the iron nanocrystal. They conducted this investigation through atomic
computer simulation and molecular static method. They performed necessary examinations on three RVEs with different
grain sizes and constant grain boundary thickness and found that with increasing grain size, the elastic modulus in iron
metal increases. Pan et al. [5] investigated the tensile properties of the tantalum nanocrystal using the MDmethod. In this
study, 7 sampleswith 16 grainswere considered. These samples differed only in grain size but had the same grain boundary
thickness. These samples were created using a specific algorithm, and their boundary conditions were considered as
periodic boundary conditions. By examining the plotted stress-strain diagrams, it was observed that with increasing grain
size, the elastic modulus of the RVE also increases. Zhou et al. [15] calculated the Young’s modulus of the aluminum
nanocrystal and investigated the effects of changes in grain size on theYoung’smodulus. Sanders et al. [16] assessed copper
and palladium nanocrystals, with initial grain sizes ranging from 10 to 110 nm. They performed operations of hardening
and softening on these nanocrystals and observed that, as the grain size decreases, the elastic modulus and consequently
the hardness of the metal decrease. Softening refers to the reduction in the size of nanocrystal grains, leading to a decrease
in the elastic modulus and thus softening of the nanocrystals. Schiotz et al. [17] investigated the effect of grain size on the
elastic modulus of the nanocrystalline metal, which leads to softening and hardening of that. They examined the influence
of grain size on its elastic modulus. They introduced that, usually, the hardness of the metal decreases with the decrease
in grain size. They attributed this to the elastic properties of the grain boundaries, which are generally lower compared
to the grains. They achieved this by inducing partial strain and then calculating the Young’s modulus of the nanocrystals.

The elasticity of grain boundaries compared to grains is significantly weaker. Reducing the grain size in a fixed grain
boundary thickness leads to an increase in the volume fraction effect of grain boundaries. Consequently, this decreases
the overall elasticity of nanocrystals, specifically, at grain sizes smaller than 20 nm [15]. In this grain size, the volume
fraction effect of the intermediary nanocrystal phase, i.e., triple junctions, and particularly grain boundaries exert a greater
influence on the Young’s modulus and other elastic properties of nanocrystals. By considering the aforementioned aspects,
it is imperative to thoroughly understand the elastic properties and precisely calculate the elasticity of grain boundaries.
This is crucial for the development of optimal and enhanced designs. To the best knowledge of researchers, the research
conducted in this field focused on investigating the effects of grain size on the elastic modulus of nanocrystalline metals
using both theoretical and experimental methods [15, 18–22]. Despite the considerable influence of grain boundary
elasticity on the overall properties, a significant gap exists in the research dedicated to its quantifiable calculation. By
surpassing these deficiencies and advancing the field, this study aims to fill the existing gap. The objective of this research
is to model the elasticity of grain boundaries and calculate their elastic modulus in nanocrystalline metals.

This paper is prepared as follows: the formulation and RVE modeling are described in Sec. 2; the FE simulation
is described in Sec. 3; the results are presented in Sec. 4; and the article is concluded in Sec. 5.

2. Method

To model the elasticity of grain boundaries in nanocrystalline metals, three RVEs representing nanocrystals are
constructed for five metals with different crystal structures. Each of these RVEs has varying grain sizes and a constant
grain boundary thickness. The Young’s modulus (elasticity) of grain boundaries is computed through uniaxial tensile
simulations. The following assumptions underpin this approach:
– Constitutive Law: Linear elasticity (Hooke’s Law);
– Grain Properties: Elastic behavior with cubic symmetry;
– Grain Boundary Properties: Isotropic for the intermediate phase in the RVE;
–Modeling Approach: 3D RVEmodeling, FE simulation, and extraction of constitutive property equations.

The summary of the method is described following, and in the subsequent subsections, it will be explained in detail
step by step (Fig. 1).

1. Preparation of the RVE through the partitioning method based on the parameters specified for modeling, i.e., the
grain boundary thickness to the grain size ratio.

2. Defining the behavioral model of grains and grain boundaries in the RVE. The grain behavior model is represented
as the cubic symmetry and implemented through aUMAT subroutine. Grain boundaries are considered isotropic, and their
Young’s modulus is taken as a coefficient (grain boundary weakening coefficient, α) of the Young’s modulus of the RVE.

3. Performing uniaxial tensile simulation through FE software, Abaqus.
4. Determining Young’s modulus of the RVE through the uniaxial tensile simulation performed in step 3.
5. Comparison between the Young’s modulus obtained from FE simulations and the Young’s modulus extracted

fromMD simulations and experimental tests from other studies.
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Fig. 1. Weakening coefficient
calculation flowchart

6. Presenting the value of the selected weakening coefficient as the case of a
difference of less than 1%betweenYoung’smodulus values obtained from the FEMand
that extracted from other studies. Otherwise, an escalation in the weakening coefficient
is envisaged, necessitating a repetition of steps from 3 onwards.

2.1. Formulation

Since the behavior of grains is assumed to be elastic and cubic symmetry, in this
section, constitutive equations for materials with cubic symmetry are developed [23,
24]. In other words, these equations are applied tomodel the relationship between stress
and strain quantities of grains in the RVE of nanocrystal; these equations are expressed
in this section.

The relationship between stress and strain for materials in an index notation is
represented as σij = CijklEkl, where Cijkl is a fourth-order tensor [25]. This
relationship is expressed in matrix form in two dimensions as follows:

σ11

σ22

σ33

σ12

σ13

σ23

=


C1111 C1122 C1133 C1112 C1113 C1123

C2222 C2233 C2212 C2213 C2223

C3333 C3312 C3313 C3323

Symm C1212 C1213 C1223

C1313 C1323

C2323




ε11
ε22
ε33
2ε12
2ε13
2ε23

. (1)

Eq. (1) can be rewritten in Voigt notation [26] as follows:
σ1

σ2

σ3

σ4

σ5

σ6

=


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

Symm C44 C45 C46

C55 C56

C66




ε1
ε2
ε3
2ε4
2ε5
2ε6

. (2)

Considering the existing symmetries, Eq. (2) for materials with cubic symmetry is
written in the form present in Eq. (3). It should be noted that the engineering constants
required for materials with cubic symmetry are three constants: C11,C12, andC44:

σ1

σ2

σ3

σ4

σ5

σ6

=


C11 C12 C12 0 0 0

C11 C12 0 0 0
C11 0 0 0

Symm C44 0 0
C44 0

C44




ε1
ε2
ε3
2ε4
2ε5
2ε6

. (3)

MatrixCij in Eq. (3) is the stiffness matrix, and its inverse, i.e., Sij , which defines the relationship ε=Sσ, is called the
compliance matrix. The constants expressed for materials with a cubic symmetry behavior in the compliance matrix are
as specified in Eq. (4), and its inverse is written in the form of the matrix in Eq. (5):

S=



1

E

−ν

E
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1

E
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E
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1
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1
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1

µ
0

1

µ


, (4)
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C=



E(ν−1)

2ν2+ν−1

−Eν

2ν2+ν−1

−Eν

2ν2+ν−1
0 0 0

E(ν−1)

2ν2+ν−1

−Eν

2ν2+ν−1
0 0 0

E(ν−1)

2ν2+ν−1
0 0 0

Symm µ 0 0
µ 0

µ


, (5)

where ν is the Poisson ratio,E is the Young’s modulus, and µ is the shear modulus.
Each grain inherently has a different and unique orientation; therefore, after developing the constitutive equations

for individual grains, which are terminologically called local, it becomes imperative to generalize these equations for
the entire RVE of the nanocrystal. Considering the various orientations of each grain, by utilizing these angles and the
coordinate axis transformation, it is possible to derive a generalized stiffness matrix for all grains present within the
RVE. For this purpose, it is necessary to apply the transformation matrix between two right-handed coordinate systems.
Considering e1, e2, e3 and e

′

1, e
′

2, e
′

3 as the corresponding unit vectors of two right-handed Cartesian coordinate systems,
e1, e2, e3 can be formed in such a way that they align with e

′

1, e
′

2, e
′

3 through a rigid-body rotation or a rotation followed
by a reflection about e

′

1, e
′

2, e
′

3 [9]. Consequently, the orthogonal tensorQ relates the two basis vectors ei and e
′

i to each
other as follows:

e
′

i=Qei,

Qij=cos
(
ei,e

′

j

)
.

The definition of the fourth-order stiffness tensor using transformation laws is expressed as follows:

C
′

ijkl=QmiQnjQrkQslCmnrs.

To transform the local stiffness matrix of each grain into the general stiffness matrix of the nanocrystal RVE, a symmetric
Euler angle matrix is applied [27, 28]; the components of this matrix are as follows:

Q11=−sinφsinω−cosφcosω cosθ,

Q12=sinφcosω−cosφsinω cosθ,

Q13=cosφsinθ,

Q21=cosφsinω−sinφcosω cosθ,

Q22=−cosφcosω−sinφsinω cosθ,

Q23=sinφsinθ,

Q31=cosω sinθ,

Q32=sinω sinθ,

Q33=cosθ.

(6)

In Eq. (6), the variables φ, ω, and θ represent the angles corresponding to the orientation of each grain, and the elements
ofQ are the components of the symmetric Euler angle matrix.

2.2. RVEmodeling

In this section, considering the existing assumptions, computational limitations, and, most importantly, the influence
of the intermediate phase of the nanocrystal on its elastic properties, a suitable model is proposed for the nanocrystal RVE.
In this research, the intermediate phase of the nanocrystal is considered as grain boundaries. Consequently, a crucial
and vital parameter in modeling this issue is the ratio of the grain boundary thickness to the grain size. To determine this
ratio, first, an acceptable range is extracted from other studies conducted in this field. Subsequently, utilizing the rule of
mixtures and volumetric fraction of grain boundaries, the grain size and the grain boundary thickness are considered for
modeling the RVE.

Experimental investigations andnumerical simulations reveal that the change in theYoung’smodulusofnanocrystalline
metals is directly influenced by the volumetric density of nanocrystals [3, 5, 15–17]. Moreover, these changes exhibit
a meaningful relationship with both grain boundary thickness and grain size. The changes in the Young’s modulus of
nanocrystalline metals with grain cubic symmetry vary for larger grain sizes with a slight slope compared to smaller
grain sizes. However, when the grain size decreases to less than 20 nm, the variations in the elastic modulus show a
significant correlationwith changes in grain size. A review of the research articles [3, 5, 15–17] indicates that the proposed
distribution of grain size and grain boundary thickness suggests a volumetric density of grain boundaries in the RVE of
the nanocrystal ranging from approximately 30 to 50 % [20–22, 29]. Consequently, the ratio of grain boundary thickness
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to grain size is calculated to be around 1/10 to 1/5 using Eq. (7):

F = 1−
(
1− t

D

)3

. (7)

In Eq. (7), the variable t represents the thickness of the grain boundary, and D denotes the grain size. Notably, this
equation was proposed in [20].

In this study, the rule of mixtures [30] is applied to microstructure problems for the modeling of the RVE. Grains
are regarded as the matrix, while the grain boundaries are treated as the fibers. By applying the rule of mixtures to
microstructure problems, the volume fraction of grains, Vg , and the volume fraction of grain boundaries, Vgb, are defined
as follows:

Vg=
vg

vRVE
, Vgb=

vgb
vRVE

.

It should be noted that in the above equation, vRVE represents the total volume of the RVE of the nanocrystal. The
relationship between Vg and Vgb is as follows:

Vg+Vgb=1.

By employing the rule of mixtures and applying it to microstructure problems, Eq. (8) is derived. It should be noted
that Eq. (8) provides the Young’s modulus of the RVE as a weighted average of the moduli of the grain (Eg) and grain
boundary (Egb):

ERVE=EgbVgb+Eg(1−Vgb), (8)

whereEg is the bulk elastic modulus, i.e., the elastic modulus of a pure crystal (without grain boundary).
By dividing both sides of Eq. (8) byEg , the equation is rewritten into the following form:

ERVE

Eg
=

Egb

Eg
Vgb+(1−Vgb). (9)

Given the ratio of the Young’s modulus of the RVE to the bulk Young’s modulus (i.e., ERVE/Eg) for different grain
sizes, and also considering the ratio of the Young’s modulus of the grain boundaries to the bulk Young’s modulus (i.e.,
Egb/Eg), it is possible to calculate the volumetric fraction of grain boundaries, Vgb, and create the nanocrystal RVE.
For this purpose, first, extractERVE/Eg andEgb/Eg from the other conducted studies. Next, calculate the volumetric
fraction of grain boundaries, Vgb through Eq. (9), and then determine the grain boundary thickness and grain size. These
calculations are outlined in Eq. (10) for modeling a sample with a grain size of 6 nm. It should be noted thatERVE/Eg

andEgb/Eg are extracted from [17]:

D=6nm ,
ERVE

Eg
=0.7 ,

Egb

Eg
=0.45→ Vgb=54%. (10)

For other samples with grain sizes of 9 and 12 nm, the same procedure is followed, and the results are summarized in
Table 1.

Table 1. The grain size, grain boundary thickness, and grain boundary volume fraction extracted from [17]

D (nm) t (nm) Vgb (%) ERVE/Eg

6 2 54 0.7

9 2 42 0.75

12 2 34 0.8

A comparison of the values presented in Table 1 with the designated range for the ratio of grain boundary thickness
to grain sizes (approximately 30 to 50%) demonstrates the validity and acceptability of the chosen ratio. All samples
generated for various materials associated with their volumetric fractions are summarized in Table 2.

After determining the volumetric fractions of grains and grain boundaries (i.e., specifying the ratio of grain boundary
thickness to grain size), the RVE of the nanocrystal is constructed using the method proposed in [15], which involves
creating volumetric partitions on a cube with specified dimensions (Fig. 2).

As an example, a nanocrystal RVE is created using the aforementioned method, which involves creating volumetric
partitions with a grain size of 10 nm and a grain boundary thickness of 1 nm in a cube with dimensions of 54×54×54 nm
(Fig 3). It is worth noting that the volumetric fraction of grain boundaries in this RVE is approximately 30%.

As a demonstration of the 3D model, several RVE are meticulously generated through the prescribed method and
shown in Fig. 4. These RVEs feature grain sizes of 6, 9, and 12 nm from left to right, respectively, coupled with a constant
grain boundary thickness of 1 nm (Fig. 4). It is evident from the accompanying figure below that, as grain sizes escalate
while keeping grain boundary thickness constant, there is a reduction in the volumetric fraction of grain boundaries.
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Table 2. The grain size, grain boundary thickness, and grain boundary volume fraction extracted from [3, 5, 15–17] for all case
studies

Material Cubic lattice Sample No. D (nm) t (nm) Vgb (%)

α-Fe BCC

1 6 2 54

2 9 2 42

3 12 2 34

Cu FCC

1 3.3 1 51

2 5.2 1 40

3 6.6 1 31

Al FCC

1 6.7 2 51

2 9 2 41

3 11 2 36

Ta BCC

1 3.3 1 51

2 9 2 40

3 6.6 1 31

Pd FCC

1 3.3 1 51

2 9 2 40

3 6.6 1 31

Fig. 2. The RVE created in [15] (a), view of the RVE front face (b), and enlarged fragment of the grain boundary (c)

Fig. 3. The created RVE by applying the method presented
in [15]

Fig. 4. 3D representation of RVEs with grain sizes 6, 9, and 12 nm from left to right, respectively
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3. FE simulation

The nanocrystalline RVE is created through the partitioning method with 27 grains, a grain size of 10 nm, and a grain
boundary thickness of 1 nm. Following the construction of the RVE, a behavioral model for the grains is established
with cubic symmetry using the UMAT subroutine. To ensure the accuracy of the implementation, UMAT verification
(includes simulations of uniaxial strain, uniaxial strain with limited rotation, and finite shear) is conducted. The behavior
of grain boundaries is assumed to be elastically isotropic, and their elastic property (Young’s modulus) is expressed as
a coefficient of the entire RVE elastic properties. The coefficient considered for the grain boundary Young’s modulus,
denoted by symbol α, is referred to as the weakening coefficient. It is defined as the ratio of the Young’s modulus of the
grain boundary to that of the RVE, i.e., α=Egb/ERVE.

According to Eqs. (1) to (5) and assuming cubic symmetry of the grains, modeling the described behavior requires only
the Young’s modulus and Poisson’s ratio of the isotropic material. Consequently, for the first simulation, the mechanical
properties of copper metal (i.e., Young’s modulus and Poisson’s ratio) are applied and presented as follows:

Table 3. Cumechanical properties [17]

Material Module of elasticity (GPa) Poisson’s ratio

Copper Alloy C22000 115 0.33

After modeling and applying mechanical properties to all parts of the RVE, uniaxial tension is simulated and the
RVEYoung’s modulus is calculated. For this purpose, the RVE is meshed in such a way that each grain is considered an
element. By applying axial strain at a certain moment, the stress induced due to axial displacement is calculated for the
RVE, Table 4. Finally, using the applied stress and strain, the RVE Young’s modulus (ERVE) is calculated. The boundary
conditions for simulating uniaxial tension are as follows:
– Constrain the degrees of freedom of displacement in direction 1 for the lateral surface of the RVE;
– Constrain the degrees of freedom of displacement in direction 2 for the bottom surface of the RVE;
– Constrain the degrees of freedom of displacement in direction 3 for the front and back surfaces of the RVE;
– Apply displacement in the positive direction of axis 2 by an amount of 0.001 times the length of the cube edge on the
upper surface of the RVE.

Table 4. The grain size, grain boundary thickness, grain boundary volumetric fraction, stress, applied deformation, and strain
of the first simulation

D (nm) t (nm) Vgb (%) Stress (MPa) Deformation (nm) Strain

10 1 27 20.22 0.032 0.001

Fig. 5. The schematic of RVE different surfaces: top (a), bottom (b), back and front (c), lateral surfaces (d)

After simulating the first sample, it is necessary to evaluate the RVE in terms of the number of grains (n) to determine
the appropriate number of grains for its convergence. For this purpose, three different samples with 3, 5, and 10 grains in
each dimension, with equal grain size and equal grain boundary thickness, are created, and uniaxial tension is applied to
calculate the Young’s modulus of the RVE. The stress obtained for this simulation is tabulated separately in Table 5 for
copper metal.

As shown in Table 5, as the number of grains increases, the changes become less significant, and when increased to 10
grains in each dimension (1000 in total), the relative changes are within 0.4%. Consequently, the FE simulation response
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Table 5. The stress of the RVEs with varying numbers of grains

Sample No. n Stress (MPa)

1 27 19

2 125 20

3 729 20.14

4 1000 20.22

does not show significant variation, indicating model convergence and making it suitable as a reference model for all
future simulations. Finally, 10 grains in each dimension are chosen (1000 in total), and the RVE is created.

Another point that needs to be evaluated is the convergence of the RVE based on the different grain orientations. For
this purpose, it is necessary to simulate the RVEwith three different sets of grain orientations, and the results of these
simulations should be compared with each other. The convergence of the responses indicates that the created RVE is
independent of the grain orientations.

In Table 6, σ1, σ2, and σ3 denote the tensile stress resulting from the first, second, and third set of grain orientations,
respectively. As observed in Table 6, the variations in stress based on changes in the orientations of the RVE are negligible.
Consequently, it can be concluded that the RVE is independent of the grain orientations.

Table 6. The grain size, grain boundary thickness, number of grains, and stress in all grain orientations

D (nm) t (nm) n σ1 (MPa) σ2 (MPa) σ3 (MPa)

10 1 1000 20.2221 20.2222 20.2225

To ensure the isotropy of the RVE, uniaxial tension is simulated in all three directions: 1, 2, and 3. If the obtained
elastic modulus values are consistent across all directions, it ensures the isotropy of the RVE. Notably, the boundary
conditions for simulating tension in directions 2 and 3 are identical to those in direction 1. The summarized results of
these simulations are presented in Table 7.

Table 7. The grain size, grain boundary thickness, grain boundary volumetric fraction, and the Young’s modulus in all three
directions

D (nm) t (nm) Vgb (%) E1 (GPa) E2 (GPa) E3 (GPa)

12 2 34 145.045 145.042 145.047

In Table 7, E1, E2, andE3 represent the Young’s modulus in directions 1, 2, and 3, respectively. From the results
presented in Table 7, it is evident that the variations of the RVEYoung’s modulus in all directions are negligible; hence,
the isotropy of the RVE is ensured.

It shouldbenoted that thevaluesof theYoung’smodulusofCopperAlloyC22000calculated from the above simulations
(Table 7) differ from those extracted from [17], Table 3. This difference is due to the fact that the correct weakening
coefficient has not yet been determined in the performed simulations.

4. Results and discussion

The final simulation is conducted on 5 different metal samples with varying BCC and FCC structures, Table 2. For
eachmetal, three samples are created with specific grain sizes and grain boundary thicknesses. For each sample, 8 uniaxial
tensile simulations with different weakening coefficients are performed. The Young’s modulus of the RVE is calculated
from the applied stress and the strain imposed on the RVE. Subsequently, the results obtained from applying the FEM to
the created models are discussed in Fig. 6.

Figure 6 demonstrates the Young’s modulus of the RVE based on variations in the weakening coefficient for the
metals under investigation. The horizontal axis of this figure represents the weakening coefficient, while the vertical axis
represents the Young’s modulus. As observed in this figure, with an increase in the weakening coefficient, increasing in
the Young’s modulus of the grain boundaries, the Young’s modulus of the RVE nanocrystal also increases. This figure
demonstrates the effect of the weakening coefficient of grain boundaries with constant thickness on the Young’s modulus
of the RVE. Additionally, the FE simulations conducted for each case study resulted in three values for the weakening
coefficient. By calculating the average of these values, the final weakening coefficient for each case is determined, Table 8.

The validation and verification of the obtained weakening coefficient are ensured by comparing the calculated Young’s
modulus of the RVE through the FEM, with the results of experimental tests and MD simulations from other studies [3, 5,
15–17]. For better and easier comparison, these values are plotted together in the same figure based on variations in the
volumetric fraction of grain boundaries (Fig. 7).

As observed in Fig. 7, the results obtained from FE simulations exhibit a good agreement with the results extracted
from other studies for all samples. This suitable agreement validates the obtained weakening coefficient. Moreover, from



198 Talakesh A., Torabi A. Finite element modeling of reduced grain boundaries elasticity... // Comput. Cont. Mech. 2025. Vol. 18(2)

Fig. 6. Changes in the Young’s modulus of RVEs based on variations in the weakening coefficient for different materials

Table 8. The ultimate weakening coefficient specified for each metal

Sample No. Metal Cubic structure Weakening coefficient

1 α-Fe BCC 0.75

2 Cu FCC 0.74

3 Al FCC 0.76

4 Ta BCC 0.75

5 Pd FCC 0.79

this figure, it can be seen that an increase in the volumetric fraction of grain boundaries, leading to a higher influence of
the nanocrystal’s intermediate phase (i.e., grain boundaries), results in a decreased Young’s modulus. It is worth noting
that this observation is consistent with findings from other studies conducted in this field [3, 5, 15–17]. Another outcome
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Fig. 7. Changes in the Young’s modulus of RVEs based on grain boundary volumetric fraction for different materials

observed from this figure is the effect of the volume fraction of grain boundaries on the Young’s modulus of the RVE; the
Young’s modulus of the RVE changes exponentially with variations in the volume fraction of grain boundaries.

After validating the conducted simulations and the obtained weakening coefficient for all case studies, the final
weakening coefficient for each metal is calculated through averaging the provided values, Table 8.

Using the calculated weakening coefficient for different metals with varying crystal structures, it is possible to
determine and present the range of variation for the weakening coefficient in nanocrystalline metals; the calculated
weakening coefficient falls within the range of 0.74 to 0.79. The minimal variance demonstrated in this range allows for
the determination of an average weakening coefficient of 0.76 for crystalline metals.

5. Conclusion

Based on the significant influence of grain boundaries as a key component of nanocrystalline metals on their
overall elasticity, the primary objective of this research was to model and calculate the elasticity of grain boundaries in
nanocrystallinemetals. For this purpose, five nanocrystallinemetalswith different crystal structureswere chosen, and their
grain boundary elasticities were calculated. To calculate the grain boundary elasticity, first, an RVE was created based on
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parameters such as the grain boundary thickness to grain size ratio and the volumetric fraction of grain boundaries. Next,
for each RVE, a constant grain boundary thickness and variable grain sizes were considered, resulting in different grain
boundary volumetric fractions; this procedure was performed for all sample metals. Then, the behavior of each part of this
RVE, namely, the cubic symmetry for grains and the elastically isotropic for grain boundaries, was simulated by applying
a desired weakening coefficient of elasticity from the macroscopic elastic modulus of the sample metal. Then, uniaxial
tensile tests were simulated to calculate the Young’s modulus of the RVEs. For each of them, eight simulations were
carried out to achieve the target Young’s modulus, extracted from experimental studies, and the weakening coefficient for
the RVE was computed. Finally, the final weakening coefficient for each metal was determined by averaging the provided
values. The main conclusions are concise as follows:
– the elasticity of grain boundaries in nanocrystalline metals was proposed as a coefficient of the overall elasticity of
nanocrystals. This coefficient was introduced as a weakening coefficient and was identified within the range of 0.74 to
0.79. Due to the slight range of variations in the proposed weakening coefficient, an averaging process yielded a value of
0.76 for this coefficient in nanocrystalline metals.
– at a constant grain boundary thickness, the Young’s modulus of the RVE increases with the grain size; this trend aligns
with other research conducted in this field.
– an increase in the weakening coefficient leads to an increase in the Young’s modulus of grain boundaries; consequently,
the overall Young’s modulus of nanocrystals increases.
– a increase in the volume fraction of grain boundaries leads to a reduction in the overall Young’s modulus of nanocrystals.
This trend arises from the increased influence of grain boundaries due to the rising volume fraction of grain boundaries.
– the volume fraction of grain boundaries significantly affects the overall Young’s modulus of nanocrystals; this effect has
an exponential form.
– the validity of the Young’s modulus calculated using the proposed method in this study was verified by observing the
good agreement between the Young’s modulus obtained in this research and that presented in other studies conducted in
this field.
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Научная статья

Конечно-элементное моделирование пониженной упругости границ зерен в
нанокристаллических металлах

А. Талакеш1, А. Тораби2

1 Исфаханский университет, Исфахан, Иран
2 Мешхедский университет имени Фирдоуси, Мешхед, Иран

Нанокристаллические металлы состоят из двух различных фаз: кристаллической фазы, а именно зерен, и
межкристаллической фазы, которая включает границы зерен, тройные соединения и четверные узлы. Ослабление упругости
в межкристаллитной фазе нанокристаллических металлов, особенно на границах зерен, приводит к снижению общего
модуля упругости. Следовательно, изучение упругих свойств и расчет упругости границ зерен имеет решающее значение для
понимания нанокристаллических металлов. Целью данного исследования является моделирование упругости границ зерен в
нанокристаллических металлах и ее расчет. Для этого рассмотрено пять образцов металла с различной кристаллической
структурой. Для каждого образца моделируются три представительных объемных элемента с различными размерами зерен и
постоянной толщиной границ зерен. Предполагается, что кристаллическая фаза упругая с кубической симметрией, в то время
как границы зерен являются упругоизотропными. Затем с помощью конечно-элементного анализа моделируется одноосное
растяжение для расчета модуляЮнга объемного элемента. В результате этого получается коэффициент ослабления границ
зерен. Чтобы проверить достоверность этого коэффициента, модуль Юнга моделируемого представительного объемного
элемента сравнивается с модулемЮнга, полученным моделированием на основе молекулярной динамики и в экспериментах,
описанных в литературе.
Ключевые слова: зерно, граница раздела зерен, нанокристаллические металлы, представительные объемные элементы,
коэффициент ослабления, модульЮнга
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