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Simulation of spherical layered system compression by shock waves with allowance
for radiative heat transfer in different approximation
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Numerical modeling is one of the basic tools to investigate physical phenomena that occur in materials compressed by shock
waves. A study of the behavior of shock waves using simplified models is helpful in the analysis of more complex systems, for instance,
in the problems of inertial thermonuclear fusion on laser facilities. Mathematical simulation of the nonstationary radiative heat transfer
in a spectral kinetic statement is rather complicated because the system of equations is nonlinear and large in size. Generally, the
kinetic transport equation is solved in 7D phase space, which requires huge computational resources. The initial system is often
approximated under certain assumptions but this immediately causes questions as to whether the simplified model is applicable to
particular calculations. In this study, several economic radiative heat transfer models were implemented in a 2D hydrodynamic code.
Based on these models, test calculations were performed to simulate the compression of a layered spherical system by shock waves,
taking into account radiative heat transfer. When the shock wave reaches the center of the sphere, it is focused and reflected. In the
neighborhood of the focal point of a converging wave, temperature gradients increase; therefore, thermal conduction and radiation
become the main mechanisms of energy dissipation to be considered when taking into account heat transfer. Maximum densities
and temperatures at the center of the sphere and their average values in its regions were calculated. In addition, the time when shock
and heat waves cross the sphere center was determined, and their behavior before and after focusing at the sphere center was estimated.
It is shown that solutions to such problems can be found much faster and with adequate accuracy when applying simplified models.
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1. Introduction

One of the directions of research of implosion processes (explosion directed not outside, as usual, but inside) on laser
installations is mathematical modeling of regimes with acceleration, i.e., such regimes that admit the existence of
unbounded solutions for a finite time interval. Previously, such problemswere considered in work [1] to study the behavior
of extreme solutions. These include shockless compression in gas dynamics, thermal explosion problems, shock wave
cumulation processes, and others [2, 3]. Modeling of the joint with gasodynamics of the heat transport system by radiation
can significantly affect solutions of such problems, in particular, to make unbounded solutions limited, but with delta-like
behavior of the basic quantities. Therefore, there is an interest in processes close to the regimes with consolidation, but
with simultaneous consideration of radiative transfer and gas dynamics.

The problem of a descending spherical shock wave was first solved by the German scientist G. Huderlei in 1942
[4] and, independently of him, by L. D. Landau and K. P. Stanyukovich in 1944 [5]. In general form, a description of the
motion of a spherical shock wave can be found in the books [6, 7]. When the shock wave arrives at the center, it is focused
at the center and reflected from it. Temperature gradients increase near the focus point of the convergent wave, so that heat
conduction and radiation become themainmechanisms of energy dissipation when heat transfer is taken into account. The
problemof a converging spherical shockwavewith accounting for radiative heat conductionwas solved byE.I. Zababakhin
and V.A. Simonenko [8], who showed that heat conduction modifies the nature of the process: instead of finite density
and infinite temperature, infinite density and finite temperature appear. Due to heat conduction, a zone called the thermal
precursor appears in front of the shock front, in which the gas not only heats up but also begins to move and thicken.

The cumulative effect can be obtained in other ways. It was demonstrated in [9] that density and pressure can increase
in a layered system of alternating light and heavy planar layers. It is much more difficult to describe the motion of
a shock wave in a layer system than in a homogeneous medium, so such systems are modeled mainly by numerical
methods. Accordingly, the degree of cumulation is much higher in spherical geometries than in planar geometries
because the shock wave is amplified by the summation of two factors: sphericity and layering. In [10], a test problem
of compression of a simple spherical system consisting of two substances is proposed, taking into account radiation
transport in different approximations. It is shown that in compression by shock waves the peculiarity of the problem
is a sharp increase in the density of the substance in the center of the sphere. The maximum density is reached after
the third shock wave has passed. Such regimes, when the average densities of substances become greater by a factor
of tens, can apparently also be attributed to problems with acceleration. Before the steady-state regime is reached, the
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main gas-dynamic quantities in this problem (temperature, density, pressure, and velocities of substance boundaries)
are oscillating functions. The oscillations of all quantities arising under the influence of strong shock waves are very
sharp and require precision methods for their qualitative reproduction. The advantage of the proposed problem is that
all radiant transfer approximations analyzed in its formulation give close results for the basic thermodynamic quantities,
and when the steady-state regime is reached, their exact values are the same for all approximations.

Earlier in [11], for testing multidimensional programs describing radiative gas dynamics processes, we considered
problems of compression by shock waves of a spherical layered system consisting of several substances, with joint
consideration of radiative heat conduction and gas dynamics. The peculiarity of these problems is — the attainment
of maximum density after the passage of the second or third shock wave. In [12], one of these problems was modeled
in the kinetic formulation with minor modifications. The behavior of finite-difference schemes for the kinetic transport
equation was studied. In the present work, six simplified models of radiative transfer are additionally applied to solve
the same problem.

2. System of equations of high-temperature gas dynamics

In mathematical modeling, the system of equations of high-temperature gas dynamics [13] is split by physical
processes and at each time step is solved in two steps. At the first stage, the gas dynamics equations— laws of conservation
of mass, momentum, and energy of gas are calculated (gas dynamic motion is represented in the Eulerian-Lagrangian
coordinate system according to the method [14]):

dρ

dt
+ρ∇·u=0,

ρ
du

dt
+∇P =0,

ρ
dE

dt
+P∇·u=0.

Here: t — time; ρ — the density of matter; u — the gas dynamic velocity vector; ∇ — the vector differential
operator; P = p + pr — the total pressure, with p (ρ,T ) — its gas dynamic component and pr = σT 4

r

/
3 — the

radiation pressure; T (r,t) — the temperature of matter; r — the radius-vector of an arbitrary point in the system;
Tr=

4

√∫
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/
(Aσ)—radiation temperature; I(r,Ω,t)—radiation intensity;Ω— the unit vector of the photon flight

direction; σ— the Stefan-Boltzmann constant; c— the velocity of light;E(ρ,T )— the specific internal energy. In the
second step, the change in internal energy due to radiant heat transfer is calculated in various approximations on the
basis of the kinetic model. The kinetic model has the form [12]:
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Here: αc (ρ,T ) — absorption coefficient,[cm−1]; αs (ρ,T ) — scattering coefficient,[cm−1]; B (T ) = AσT 4;
U(r,t)=

∫
IdΩ—radiation energy density multiplied by the speed of light c.

Let us supplement the system of equations of heat transfer by radiation with initial and boundary conditions:
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where n— the external normal to the boundary Γ̄ of the computational domain Γ .
Let us denote by S (r,t) =

∫
ΩIdΩ the radiation energy flux vector. Integrating the transport equation by Ω

with weights 1,Ω, we obtain a system of equations:
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whereD= {Dij}— symmetric tensor of quasi-diffusion coefficients and β — a parameter that determines the kind
of approximation with which radiant heat transfer is considered:

β=1, Dij=U−1

∫
ΩiΩjIdΩ—hyperbolic quasidiffusion (QD )[15],

β=0, Dij=U−1

∫
ΩiΩjIdΩ—parabolic quasidiffusion (PQD ) [16],

β=1, Dij=δij/3—P1 [17],

β=1/3, Dij=δij/3—P1/3 [18],

β=0, Dij=δij/3—diffusion (DF) [19],

δij — the Kronecker symbol (i,j=1÷n, n—dimensionality of spaceRn).
The corresponding initial and boundary conditions are of the form:

U(r,t=0)=U0(r), S(r,t=0)=S0(r), T (r,t=0)=T 0(r), ᾱU−β̄(n·S)= γ̄.

Here ᾱ, β̄, γ̄ —parameters of the boundary conditions, with ᾱ⩾0, β̄⩾0, ᾱ+β̄ >0.
In numerical modeling of the kinetic equation of transport, various assumptions [13] are used to reduce the number

of variables, counting time, and the amount of memory occupied by the computer, allowing the problem to be reduced
to a simpler one. For example, assuming a linear dependence of the radiation intensity on the direction of particle flight,
we find the P1 approximation of the spherical harmonics method. Further, expecting that there is a dependence between
the density and the radiation flux in the form of Fick’s law, we obtain the diffusion approximation. Assuming that the
approximate equalityU=B (the condition of local thermodynamic equilibrium) is valid, we arrive at the sixth, simplest
approximation of radiative heat conduction (RHC). In optically transparent media, the DF and LTP approximations give
overestimated values of the radiative flux, so it is desirable to limit the heat flux to the maximum permissible value when
calculating with these approximations. In the problem discussed in the next section, the heat flux values do not exceed
the maximum permissible values because of the sufficient optical density of the system.

The P1 model, in contrast to the DF and LTP approximations, keeps the photon propagation velocity finite, which
in the general case is less than the speed of light. This is corrected in the P1/3 approximation proposed in [18] by
introducing a 1/3 multiplier in front of the time derivative of the flux. By asymptotic analysis, G. Morel showed [20]
that the characteristics of the models in the P1/3 and P1 approximations are close.

The results of both the P1 and P1/3 approximations are presented below. The CD approximation accounts for kinetic
effects by using coefficients that are fractional linear functionals of the solution, which makes it the closest to the kinetic
model. Algorithms for solving the heat transport equation by radiation for models with different approximations are
described in [21, 22]. The method for solving the LTP equation is taken from [14].

3. Test Problem Statement

We consider a ball of radius 0⩽r⩽R2 consisting of two physical regions (Table 1). The inner region 1 (0⩽r⩽R1)
is formed by matter of density ρ1 = 0.02 g/cm3, the outer region 2 (R1 ⩽ r⩽R2) — matter of density ρ2 = 1 g/cm3.
The equation of state of each of substances is represented as P =0.54ρT andE=cV T , where cV =0.81T —constant
heat capacity. The ball, as a system, has an initial temperature of T 0 = 0.00001 keV, and an initial velocity of u= 0.
At the outer boundary of the system, the pressure in conditional units (1 u.e.=108 TPa) PR2 = 0.1 u.e. and the
temperature TR2 =0.1 keV are given. The problem formulation is described in [11], but here, for simplification, the
absorption coefficient is taken to be the same in both regions. The absorption coefficient is calculated by the formula:
αc=(ρ/5)

[(
1+8.65/

(
ρ2/3T 2

))3/2−1
]
, the scattering coefficient— by the formula: αs=ρ/5.

In the numerical realization, the computational difference grid is chosen based on the data on the convergence to
the exact solution. Before the steady-state regime is reached, all quantities are oscillating functions, and at t→∞ the
solution of the problem reaches constant values:

u=0, P =1 TPa, T =0.1 keV, R1,st=R1
3

√
ρ01
/
ρst≈0.11 cm,
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Table 1. System composition

Parameter Area number
12

Initial density ρ0, g/cm3 0.02 1
Initial radiiR1,2, cm 0.5 0.6
Number of difference grid cells 100×30 400×30

R2,st=
3

√
(1/ρst)[R3

1ρ
0
1+(R3

2−R3
1)ρ

0
2]≈0.37 cm, ρ1,2=ρst≈1.851 g/cm3.

The lower index st indicates that the quantity corresponds to the stationary regime.

4. Simulation results

The calculations were performed using a two-dimensional program developed by the authors in the RFNC-VNIITF
for axisymmetric cylindrical geometry until the maximum values of density and temperature were reached in the 1st
region (0.13µs). Then, as time passes, the density and temperature values change in the form of pulsations with out to
the stationary regime.

The convergence constant of iterations on temperature was assumed to be 10−5, the quadrature on the directions
of particle flight— ES16. The time step was varied to account for the behavior of the solution, but did not exceed 1 pc.

The maximum values of the main gasdynamic quantities (temperature, pressure, and density) are reached in the center
of the sphere. The calculation data, namely, the maximum values of the mean temperature Tmax and mean density in
the 1st region, the computer counting times (tCP), the arrival of thermal (tTW) and shock (tSW) waves at the center
of the sphere and their differences∆in percent from the results of the kinetic model are given in Table 2. The average
density and temperature of matter are calculated by formulas ρ=

∑
iρiVi/

∑
iVi, T =

∑
iTiMi/

∑
iMi, where ρi and

Ti —density and temperature in the center of a cell with index i having volume Vi and massMi.

Table 2. Calculation results

Models T 1
max,keV ∆Tmax,% ρ1max,g/cm3 ∆ρmax,% t rmTW ,µs ∆tCP,% tSW,µs ∆t rmSW ,% tCP,hour

Kinetic 0.41036 0 89.04680 0 0.67964 0 0.82870 0 24
KD 0.41247 0.52 88.18494 0.97 0.68594 0.93 0.82520 0.42 11
PKD 0.41248 0.52 88.20339 0.95 0.68595 0.93 0.82526 0.42 11
R1 0.41134 0.24 88.68709 0.40 0.68594 0.92 0.82536 0.40 2
R1/3 0.41134 0.24 88.69607 0.39 0.68595 0.93 0.82537 0.40 2
DF 0.41134 0.24 88.70132 0.39 0.68595 0.93 0.82536 0.40 2
LTP 0.40294 1.80 80.57137 9.52 0.66174 2.63 0.82142 0.99 0.5

Table 2 shows that all approximations, except LTP, show sufficiently good agreement (the difference is less than 1%)
with the kineticmodel for the quantities under consideration. The kineticmodel is themost costly in terms of counting time,
although it uses parallelization by photon flight direction. The LTP approximation looks the most economical, but it gives
the maximum differences from the kinetic model. For different approximations, the steady-state regime is reached in 10 µs
faster, compared to the kinetic calculation, approximately from 2 to 50 times, so it is rational to use approximate models.

Since for the results analyzed below, the transport models used, with the exception of LTP, give visually
indistinguishable plots, only the LTP and KD approximations are presented in the figures for comparison. The drawing 1
shows the dependences on time of the average density and temperature of substances in the regions. It can be seen that
for the entire calculation time, both approximations agree well on average temperatures and average densities. The largest
difference is observed during the heating of region 1, where the difference in data of LTP and CD at the moment of time
0.075 µs is 10%. However, by time 0.113 µs, when the mean temperature reaches a maximum, the discrepancy decreases
to 1.8%. We also note that there is a discrepancy in the mean densities at the time of maximum compression of the 1st
region at 0.117 µs: the difference between the densities found by the LTP and KD approximations is about 9%.

As shown in [11], the system under consideration is optically dense, so in different models the average matter
temperatures and average radiation temperatures donot differ in thecurrent of the entire counting time. However, in separate
points, in particular, in the center of the sphere, they can be very different, i.e., there is a "breakaway" of temperatures.

The figure 2 demonstrates the "separation" of temperatures at the moments of the arrival of shock waves at
the center of the sphere (0.0832 and 0.1125 µs). It follows from the figure that the temperature of matter almost
instantaneously— in the time of 0.4 ns, increases at the first peak by a factor of 10 (from T ≈0.3 keV to T ≈3.9 keV)
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and exceeds the radiation temperature Tr ≈ 0.65 keV by a factor of 6. To analyze the behavior of the shock and heat
waves, the profiles of the main thermodynamic quantities at different time moments are presented in semilogarithmic
scale in the figure 3: at the approach of the heat wave to the contact rupture— 0.025 µs; at the approach of the heat wave
to the center of the system— 0.065 µs; at the moment following the time of reflection of the shock wave from the center
of the sphere— 0.088 µs. The contact rupture is represented by a vertical dashed line and the distances to the center
of the sphereR=

√
r2+z2 correspond to it, respectively, cm: 0.1047; 0.2621; 0.4987.

The drawing 3a shows the dependences on the distance to the center of the systemR of profiles T , P , ρ at time close
to the arrival of the heat wave to the contact rupture. It can be seen that four zones can be distinguished: the zone of
unperturbed cold matter (0<R<0.498 cm, ρ=0.02 g/cm3, T =10−5 keV, P =10−7 u.e.); the shock precursor zone
(0.498<R<0.506 cm, 0.02<ρ<1 g/cm3, T ≈10−5 keV, P ≈10−5 u.e.); the shock wave zone (R≈0.506 cm); the
shock wave heated after shock wave zone (0.506<R< 0.535 cm, ρ≈ 4 g/cm3, 0.05<T < 0.1 keV, P ≈ 0.1 u.e.). In
this case, the thermal and shock wave fronts coincide.

Figure 3b contains profiles T , P , ρ at time close to the arrival of the heat wave at the center of the system. Six zones
can be distinguished in the graphs: the zone of unperturbed cold matter (0<R<0.07 cm, ρ=0.02 g/cm3, T =10−5 keV,
P =10−7 u.e.); the shock wave precursor zone, where the temperature exceeds the boundary value (0.07<R<0.21 cm,
ρ = 0.02 g/cm3, T ≈ 0.15 keV, P ≈ 10−3 u.e.); the shock wave zone (R ≈ 0.21 cm); the rarefaction wave zone at
(R≈0.3 cm); the zone between the shock wave and the rarefaction wave (0.21<R<0.3 cm); the zone in front of the
rarefaction wave (0.3<R<0.41 cm). In this case, the heat wave front is ahead of the shock wave front by about 0.14 cm.
The temperature rise above the boundary value in the zone between thermal waves (0.07<R< 0.3 cm) is explained
by the transfer of part of the kinetic energy to thermal energy due to the compression of matter.

Figure 3c shows the profiles of T , P , ρ after the shock wave is reflected from the center. Three zones are seen: the
zone after the passage of the reflected shock wave (0<R< 0.025 cm); the zone from the reflected heat wave to the
reflected shock wave (0.025<R<0.185 cm); and the zone before the reflected heat wave (0.185<R<0.31 cm). After
the shock wave is reflected from the center, the system is fully heated, and the reflected heat wave front is ahead of the
reflected shock wave front by about 0.17 cm. Secondary heating and compression waves in the 2nd region of the ball
create a nonmonotonic pattern of behavior of the quantities T , P , ρ in the third zone.

5. Conclusions

The paper tests various approximate models of heat transfer by radiation on the problem of compression of a spherical
system by shock waves. The results of calculations aimed at finding the maximum values of densities and temperatures
both in the center of the sphere and their average values in the regions, as well as at determining the arrival times of
shock and heat waves in the center of the system, are presented. The passage of shock and heat waves through the contact
rupture and their behavior before and after focusing in the center of the system are investigated. It is shown that problems
of this type can be solved much faster using simplified models.

The results allow us to draw the following conclusions:
1) The substance-averaged temperatures and densities coincide in all models to within 1%, with the exception of the

(a) (b)

Fig. 1. Time-dependent mean values of temperature (a) and density (b) for two approximations of radiative heat transfer:
Region 1 – LTP (dashed line), KD (solid); Region 2 – LTP (dotted line), KD (dashed)
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.
Fig. 2. Temperatures at the center of the sphere for
the CD approximation: matter temperature (dotted
line), radiation temperature (solid line)

LTP. In the LTP approximation at the moment of maximum compression, the difference from the kinetic model in
the mean density in the 1st region reaches 9.5%, and the maximummean temperature— 1.8%.

2) The temperature "breakaway" effect is observed only at the points of maximum compression in all models except LTP,
where it is not possible. The temperature of matter at the points of maximum compression can exceed the radiation
temperature by a factor of more than 6.

3) The range of the arrival time at the center of the system of a heat wave according to the considered models, except
LTP, is rather small, about 0.6 ns, the arrival time of a shock wave about — 0.4 ns. In the LTP approximation, the
arrival time at the center, in comparison with the kinetic model, is smaller by about 2 ns for the thermal wave and

(а) (b)

(c) Fig. 3. Shock front (vertical dashed line) and profiles
of temperature T (solid line), pressure P (dashed),
density ρ (dashed) in the KD approximation at
different time moments, µs: 0.025 (a); 0.065 (b);
0.088 (c).
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by about 0.7 ns for the shock wave.
4) By the time the shock wave approaches the contact rupture and the center of the system, a thermal precursor zone can

be identified. This is the difference between the described test formulation and classical formulations of shock-wave
problems such as penetration, shock-wave loading, breakaway phenomena, and others, where thermal conductivity
does not play a significant role.

5) Although in spherical layers the degree of cumulation may be much higher than in planar layers, the thermal radiation
accounted for in this problem gives a finite density and temperature at the moment of focusing, which is confirmed
by calculations in models of different degrees of approximation.

6) Before the moment of focusing, a heating zone appears in the center of the system before the shock wave in the 1st
region due to radiation, in which the matter reaches a temperature higher than the boundary temperature. At the
moment of focusing in the center of the system, the temperature of the matter increases by a factor of more than 10.

7) In the problem under discussion, the counting time in KD and PKD approximations is about two times less than the
counting time of the kinetic model (taking into account parallelization by directions of photon flight), in DF, P1, and
P1/3 approximations— 12 times less, in LTP approximation— 48 times less.

8) The coincidence of the results of the kinetic model and in the DF approximation shows a reasonably good accuracy and
monotonicity of the TVDR (Total Variation Diminishing Reconstruction) [21] kinetic scheme of higher approximation
order, since the DF approximation uses a second-order approximation scheme in space [22]. The classical monotonic
first-order approximation scheme for the kinetic model gives a difference from the TVDR scheme in the time of arrival
of the heat wave in the center of the system of about 26% [12].
The test problem and the results obtained by the authors can be used to study the processes of compression of

substances by shock waves and to test the methods of high-temperature gas dynamics that take into account heat transfer
by radiation in different approximations.
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