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A hyperbolic model of a vapor-drop mixture is presented that takes into account the evaporation of 

drops by an explosive mechanism. The model is developed on the basis of the generalized equilibrium 

model of a mixture proposed by the author earlier. To hyperbolize the equations, forces of interfractional 

interaction are introduced. The liquid fraction was assumed to be incompressible. In the model used, it was 

assumed that the phase transition in the process of intense evaporation of droplets occurs under conditions 

of an overheated state when the liquid temperature exceeds the saturation temperature. A characteristic 

analysis of the model equations was carried out, and their hyperbolicity was shown. An analytical formula 

was obtained for determining the speed of sound in a vapor-drop mixture. It is noted that the speed of sound 

in the mixture in the presence of phase transformations turns out to be somewhat smaller than that given by 

Wood's formula. A multidimensional nodal characteristic method is described, intended for integrating 

hyperbolic systems, which is based on splitting the original system of equations into a number of one-

dimensional subsystems. Differential relations are derived that are valid in the characteristic directions for 

each of the subsystems. When calculating one-dimensional problems, an iterative algorithm of the inverse 

method of characteristics was applied. The computational method has been tested on a number of problems 

with self-similar solutions. The flow of a vapor-droplet flow near the disk was studied using the chosen 

method of integration of the multidimensional system of equations. It is shown that in some cases, it is 

necessary to take into account the explosive boiling of liquid droplets since it can significantly change the 

pattern of flow around the disk. 

Key words: vapor droplet mixture, hyperbolic model, multidimensional node method of characteristics 

 

1. Introduction 

 

A model of a vapor-droplet mixture is presented, in which the evaporation of drops by the mechanism of 

explosive boiling is taken into account. The single-velocity generalized equilibrium (GR) hyperbolic two-

temperature model from [1] was taken as the basis. Previously, the GR model was used by the author in 

modeling wave processes in foamed liquids and bubbly media [2], in studying the flows of viscous heat-

conducting mixtures (in this case, instead of the original Fourier and Stokes laws, their relaxation analogs were 

used [3]), and for localizing contact surfaces in multifluid hydrodynamics. The results discussed in this paper 

indicate that the GR model is also suitable for studying multidimensional flows in the presence of phase 

transformations by the mechanism of explosive (volumetric) liquid boiling; it is shown that the type of the 

system of equations does not change — it remains hyperbolic. The conservation of hyperbolicity makes it 

possible, in particular, to find an analytical expression for the velocity of sound waves in a mixture in the 

presence of phase transformations. Solutions of one-dimensional problems within the framework of this model 

were carried out in [4]. It should be noted that the explosive boiling model was previously used to simulate an 

overheated liquid under conditions of a sharp change in external pressure, for example, during pipeline 

depressurization [5], but not to study flow of the vapor-drop mixture. However, the op model can also be used 

to calculate flow parameters with another mechanism of phase transformation — surface evaporation from 

media interfaces [6–8]. For rather "small" droplets, which are the main object of study, the one-velocity 

approximation is justified. This is confirmed in [9], where a direct comparison was made with the results of 

solving a problem close to the one considered in this article, described by a one-velocity model and a model 

that takes into account velocity nonequilibrium. Integration of the model equations is carried out by the method 

of characteristics (MC), the essence of which is the transition from differential equations in partial derivatives 

to ordinary differential equations, which are written along the characteristic directions. Various schemes of 

multidimensional MC are given in [10]. 

In the work presented to the reader's attention, a variant of the multidimensional MC is used, based on the 

splitting of the original system of equations in space variables into a number of one-dimensional subsystems 

with their subsequent integration using the one-dimensional nodal MC [11]. This method of splitting in 
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directions is similar to the approach from [12]. Unlike the well-known method of fractional steps [13], 

fractional time steps are not used in the algorithm. It is important that, despite the number of arithmetic 

operations performed in the multidimensional nodal mx described below than in a number of finite-difference 

or finite-volume methods, the total computational time often turns out to be significantly less due to a larger 

time step. In addition, the software implementation of multidimensional nodal MC is much simpler than many 

finite-volume methods due to the absence of a laborious procedure for constructing grids in the computational 

domain with the subsequent solution of Riemann problems on the faces of adjacent cells, for example, as in 

the Godunov method, which is especially important for problems with complex geometry of the computational 

domain. 

 

2. Steam-droplet mixture model 

 

The equations describing the axisymmetric flow of a single-velocity vapor-drop mixture, in which, for 

simplicity, the liquid is assumed to be incompressible (in [14], this approximation was removed) in the 

presence of phase transformations and expressing the laws of conservation of mass, momentum, and energy 

for each of the fractions that make up the mixture in divergent form, have the form: 
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where p is pressure; u and v are the components of the velocity vector in the direction of the symmetry axes 

Ox and Or; J −  the intensity of vaporization per unit volume of the mixture; f  is the density vector of the 

force of interfractional interaction with the components ( ),x rf f , which ensures the absence of relative slippage 

of fractions, which is unknown in advance and is determined in the process of integrating system (1) [1]; αi is 

the volume fraction of the i-th fraction in the mixture (i = s, st), st s 1 + = ; 0

i  –– the physical density of the 

i-th component; 
2 2

2
i i

u v
e

+
=  +  –– specific total energies; ( )0

st st st,p =    and s v,s s s0c =  +   are the specific 

internal energies of steam and incompressible fractions; cv,s –– the heat capacity of the liquid; s  –– the 

temperature of the dispersed fraction. The indices s and st denote the incompressible fraction and vapor, 

respectively. It is important that if the force of interfractional interaction is not included in the equations of the 

model, then system (1) loses the property of hyperbolicity [1]. In this work, processes were studied at rather 

short time intervals, measured in milliseconds, so interfractional heat transfer was not taken into account. The 

intensity of the water–steam phase transition was calculated from the relation [15]: 

 

 
0

st s2 Ja Nu ,J an D =  (2) 

where the dimensionless Jacob and Nusselt numbers were determined from the expressions 
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In (2), the following designations are adopted: s
s 0

s s

D
c




=  –– the coefficient of thermal conductivity; s  

and sc  –– the thermal conductivity and heat capacity of the liquid; h –– the specific heat of vaporization; a –– 

the radius of the drop (for simplification, we assume that all drops have the same size); n –– the number of 

drops per unit volume of the mixture. The last two parameters are related to the volume fraction of the liquid 

fraction in the mixture by the ratio 3

s

4
.

3
na =  Saturation temperature ( )N p  was determined from the 

expression 

( )
N ( ) ,
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p

p p


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where for water: 920,2 10 Па, 4200 K, 31 Kp  =  = =  [16]. The calculations assumed that the phase 

transition in the process of explosive boiling of droplets occurs in an overheated state when the temperature of 

the liquid exceeds the saturation temperature, that is, at ( )s N sp  −   , where s  – overheating of the 

liquid. 

Summing up the corresponding conservation laws for the fractions composing the mixture, we obtain the 

conservation laws of mass, momentum and energy for the mixture as a whole: 
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Here, 0 0

st st s s    = +  is the density of the mixture; ( )0 0

st st st s s s

1
      
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= +  and 

2 2

2

u +v
e = +  –– the 

specific internal and total energy of the mixture per unit volume. Equations (3) in quasilinear form have the 

form 
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 The corresponding conservation laws for vapor and liquid from (1) will take the 

form 
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Here, 0

k k k  =  is the reduced density of the k-th fraction (k = s and st). Considering the equality 
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the law of conservation of energy for the mixture as a whole can be rewritten as 
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Here, c is the speed of sound in the mixture. Thus, the equations of axisymmetric motion of a vapor-droplet 

mixture in the presence of phase transformations in a quasilinear form take the form 
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The roots of the characteristic equation of system (5) are real numbers. In addition, the eigenvectors 

corresponding to the eigenvalues of the system are linearly independent; therefore, system (5) belongs to the 

hyperbolic type [17]. In addition, in (5), there are no densities of forces of interfractional interaction. If 

necessary, they can be found from the original system of equations (1). 

The following were used as the caloric and thermal equations of state of water vapor: 
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where st = 1,47; st 0p = ; 6

st 2,077616 10q =   J/kg; 3

v,st 0,955 10c =   J/(kg K); and st 0b =  [18]. The relations 

from [19] were also used: 
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valid at pressures less than 10 atm. Here, 3

v,st 1,43 10c =   J/(kg K); Rst= 461,7 J/(kg K); 
ch 6

st 1,93 10 =   J/kg. 

Expressions for the square of the speed of sound from (4), in the case of using (6) and (7), take the form, 

respectively: 
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Figure 1 shows the dependences of the speeds of 

sound c on αst for a steam-water mixture ( 0

s 1000 =  

kg/m3) under normal conditions, as well as the curve 

cw(αst) calculated using Wood's formula [20] 
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−
. It can be seen 

from the figure that the sound velocities in a liquid, 

taking into account phase transformations, calculated 

using relations (6) and (7), turn out to be close but 

somewhat lower than that given by Wood's formula. 

 

3. Multidimensional nodal method of 

characteristics 

 

Let us consider a small time interval, namely, the time 

integration step for system (5). Changes in the parameters that occur over this short period of time can be found 

by summing up the local changes that occur in individual coordinate directions. In other words, in order to find 

an approximate solution of system (5) for a specified time interval, the subsystem is first solved 
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which is obtained from (5), in which the terms that change the flow parameters in the direction of the symmetry 

axis Ox are retained. Then, after integration (8), based on the new distribution of defining variables, the 

following subsystem is solved: 
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which takes into account changes along the coordinate direction Or. 

The characteristic equation of subsystem (8) has only real roots: 1 u c = − ; 2 3 4 5 u   = = = = ; 

6 u c = + . The compatibility relations along the characteristic directions dx dt u c=   have the form 
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On the trajectory characteristic dx dt u= , the equalities 

 

 
Fig. 1. Dependences с(αst) – solid curve, st )с(  

– dashed curve, сw(αst) – dash-dotted curve. 
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which directly follows from subsystem (8). 

Similar relations are also valid for (9). The characteristic equation of subsystem (9) has roots: 1 v c = − ; 

2 3 4 5 v   = = = = ; 6 v c = + . The compatibility relations along the characteristic directions dr dt v c=   

have the form 
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On the trajectory characteristic dr dt v= , the equalities 
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Based on the foregoing, when passing from the time step nt  to 1n nt t t+ = +  , the calculation process is 

divided into a number of intermediate calculations, on each of which the nodes of the computational domain 

are first moved along the Ox axis and in them according to the iterative procedure of the one-dimensional nodal 

MC [11]: 
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where σ is the iteration number; indices L, C and R mark the points of intersection of the characteristics 

dx dy u c= + , dx dy c=  and dx dy u c= − , released from node ( )1, n

kx t +  with the time level nt t= . As a 

result, at the ( 1n+ )-th time step, intermediate values of the mixture parameters ( )
1

s s, , , , ,
n

p u v   
+

 are 

determined at the internal nodes of the computational domain. Expressions (14) are a finite difference 

representation of relations (10)–(11). Then, using these found values, by enumerating the nodes along the Or 

axis, the final values ( )
1

s s, , , , ,
n

p u v   
+

 are calculated by applying the one-dimensional nodal MC procedure 

in the direction of the Or axis: 
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Relations (15) are a finite difference representation of equalities (12)–(13). 

The mixture parameters at the boundary nodes located on the left end of the disk (on the windward side), 

which ensure the fulfillment of the impermeability condition, are determined from the expressions: 
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For boundary nodes on the back side of the disk, similar relations are valid, except for the first one, which 

should be replaced by the following: 

 

( ) ( )
2

( )( 1) 1 ( )

L L

L

, .+ n

k

c u r
p x t p cu t

u c

()

 +    −
− −  =  

+ 
 

 

At the nodes on the edge of the disk, the mixture parameters are found from the expressions: 
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3. Numerical simulation results 

 

To test the proposed integration method, we compare the results of numerical calculations obtained using 

multidimensional nodal MC with the data of a number of self-similar problems. As the first such problem, we 

consider a flow with a centered rarefaction wave in a flow around a flat plate at an angle δ > 0 by a uniform 

gas-liquid mixture flow with J = 0, εs = const (Fig. 2, a). In the indicated figure, BC is an impermeable wall, 
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on the remaining boundaries of the computational domain – AB, CD, DE and EA, soft boundary conditions 

were set – through which the mixture can freely flow in or out. For the problem under consideration, the flow 

parameters can be found from the system of ordinary differential equations 

To test the integration method proposed in the discussed model of a vapor-droplet mixture, we compare the 

results of numerical calculations obtained using multidimensional nodal MC with the data of solutions of a 

number of self-similar problems. 

Problem 1. Let us consider a flow with a centered rarefaction wave with a uniform gas-liquid mixture flow 

around a flat plate at an angle 0   with 0J = , consts =  (Fig. 2a). In the figure, BC is an impermeable 

plate; at the remaining boundaries (AB, CD, DE and EA), the boundary conditions are soft, that is, such that 

the mixture can freely flow in or out through these boundaries. For the problem under consideration, the flow 

parameters can be found from the system of ordinary differential equations 
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which is obtained from the flat version of system (5) after introducing the variable ξ = r/x [21]. This system is 

integrated from ( )
1

2 2
0 0M

−

 =  = −  to such a value 1 =   at which the flow becomes collinear to the plate 

surface. Here, M0 = u0/c0 and c0 are the Mach number and the speed of sound in the unperturbed mixture. 

 

Figure 2б shows the dependence p=p0(δ) obtained from system (16). The dots in this figure mark the relative 

pressures near the solid wall, calculated by the above-described flat version of the multidimensional nodal MC 

upon reaching the steady flow regime at p0 = 0,1 MPa, αs0 = 0,02 for a water-air mixture (γ = 1,4; ρg0 = 1,16 

kg/m3; ρs0 = 1000 kg/m3) on a grid of 300×300 nodes. We note the coincidence of the results of numerical 

calculations with the self-similar solution (solid curve). 

If the angle δ < 0, then in this case, the regime with an attached shock (with an angle of inclination β to the 

Ox axis) is realized, the flow parameters behind which, like the angle β itself, can be found from the system of 

nonlinear algebraic equations 
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Fig. 2. Flow with a centered rarefaction wave: flow diagram (a); dependence of p/p0 at the barrier on δ (b). 

a b 
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which are the Rankine–Hugoniot relations written in the direction orthogonal to the front of the attached shock, 

considered together with the expression for the shock adiabat of the mixture [22]. 

 

 

In Fig. 3, a – б solid curves mark the dependences β(M0), p = p0(M0), obtained from the system of equations 

(17) at p0 = 0,1 MPa, αs0 = 0,02, and δ = –30 for water-air mixtures. On the same plots, the dots mark the results 

of numerical simulation calculated using the MUCM on a grid of 500×500 nodes with a Courant number of 

1,19. Note the coincidence of the calculated data with the self-similar solution. 

 

Problem 2. Let us consider the shock wave falling 

on the disk (Fig. 4), moving through the vapor 

without drops. The disk is located in a half-space 

filled with a vapor-droplet mixture with p0 = 0,1 MPa; 

s0 =0,01; n = 109 m–3; and s0 = 375 K. The physical 

and thermodynamic characteristics of water droplets 

are as follows: 0

s  = 1000 kg/m3; λs = 56,4×10–2 kg 

m/(s3 K); cs = 4,22×103 m2/(s2 K); h = 2,3×106 J/kg; 

and Δθs = 0. The properties of water vapor were 

determined using the thermal and caloric equations of 

state (7). The pressure, velocity, and density of the vapor behind the shock wave front in the gas fraction (with 

index sh) were calculated from the relations 
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where c0 and M0 = D/c0 are the speed of sound in the undisturbed steam and the Mach number (D is the velocity 

of the shock wave front), respectively. A shock wave moving in a dusty space is formed as a result of the 

interaction of a shock wave moving along a vapor with a contact boundary separating pure and dusty gases. 

Figure 5, а – б shows the distributions of pressure p/p0, volume fraction of the dispersed fraction αs by the 

time t = 0,087 s, obtained in the calculation at the Mach number М0 = 1,5. The calculations were carried out 

on a grid of 400×100 nodes. Note the absence of droplet evaporation during the entire calculation time, 

including behind the disk. This is because for this problem, the pressure in the entire computational domain 

always exceeds the initial value p0, and therefore, the saturation temperature always exceeds the liquid 

temperature, as a result of which there is no boiling of droplets. We also note the presence of damped pressure 

oscillations at the end of the disk from its windward side near the symmetry axis (Fig. 5, в). 

Problem 3. As a problem in which explosive evaporation of drops is observed, the flow of a vapor-drop 

mixture near a disk is considered. The disc is instantly placed in a homogeneous flow of a dispersed medium 

with the following parameters: 0,1 MPa; αs0 = 0,01; n = 109 m–3; s0 =  375 K, and moves along the axis of 

symmetry with a speed of u0 = 20 m/s. The calculations were carried out on a grid with 100×100 nodes. 

 

 

 

Fig. 3. Flow with an attached shock: ( )0M  (а) и ( )0 0Mp p  (b). Solid curves – self-similar solution, dots 

– data of numerical calculations. 

 

Fig. 4.  Scheme for the problem of the interaction 

of a shock wave with a disk in a vapor-drop mixture. 

а 
b 
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Fig. 5. Interaction of a shock wave with a disk: 

distributions of pressure p/p0 and volume fraction of liquid 

fraction αs by time t = 0,087 s (а – b); dependence of p/p0 

on time at the end face on the windward side near the axis 

of symmetry of the disk (c). 

 

Figure 6 shows the calculated data on the distribution of the relative pressure and volume fraction of the 

liquid fraction, as well as the saturation temperature near the disk, obtained by the time t = 0,045 s. Since the 

temperature of the droplets is higher than the saturation temperature, which, as seen from Fig. 6в, has a value 

of 374 K, intensive droplet evaporation is observed behind the disk. 

 

  

 

Fig. 6. Distributions of pressure p/p0 (а), volume 

fraction αs (b), saturation temperature θN (c) by the 

time t = 0,045 s for the variant θs > θN  

 

Problem 4. Figure 7 shows the results of calculating the flow around the disk for the same initial data as in 

problem 3, but with the initial temperature of the drops s0 315 =
 
K. In this case, the temperature of the drops 

behind the disk is below the marked level of 374 K, so there is no evaporation of the drops, and the flow differs 

significantly from that considered above with the explosive evaporation of droplets behind the disk. 

 

  

a b 

c 

c 

a 

b 
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Fig. 7. Distributions of pressure 
0p p  (a), volume fraction 

s  (b) for
s N   

 

4. Conclusion 

 

A hyperbolic model of a vapor-droplet mixture is presented, which takes into account the evaporation of 

drops by an explosive mechanism. It is a development of the generalized-equilibrium mixture model. The 

liquid fraction is assumed to be incompressible. In the model used, it is assumed that the phase transition in 

the process of intense droplet evaporation occurs under conditions of an overheated state when the liquid 

temperature exceeds the saturation temperature. A characteristic analysis of the model equations is carried out, 

and their hyperbolicity is shown. An analytical formula is obtained for calculating the speed of sound in a 

vapor-drop mixture. It is noted that the value of the speed of sound in the mixture in the presence of phase 

transformations turns out to be somewhat lower than that given by Wood's formula. 

A multidimensional nodal characteristic method is described for integrating hyperbolic systems, according 

to which the original system of equations is split into a number of one-dimensional subsystems. For each of 

the subsystems, differential relations are derived that are valid in the characteristic directions. When solving 

one-dimensional problems, an iterative algorithm of the inverse method of characteristics is applied. The 

algorithm has been tested on plane problems with self-similar solutions, such as the flow of a uniform flow 

near a plate with an attached shock wave and flow with a centered rarefaction wave. This calculation method 

was used to study the flow of a vapor-droplet near the disk. 

It is shown that when a shock interacts with a disk surrounded by a vapor-droplet mixture, no evaporation 

of drops by the mechanism of explosive boiling is observed. Intensive boiling of drops behind the disk takes 

place when the disk is instantly placed in a vapor-droplet flow with an initial droplet temperature exceeding 

the saturation temperature. In this case, the explosive boiling of liquid droplets significantly changes the pattern 

of the flow around the disk, which must be taken into account when solving problems with such a physical 

phenomenon. 
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