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The influence of horizontal insulating plates of different sizes on the structure of a convective flow and on the total 

heat flux in a cavity with aspect ratio 5 is studied numerically. Direct numerical simulations have been performed using 

the open source software OpenFoam 4.1 at Prandtl number 6.12 and for two Rayleigh numbers: 3.9·107 and 3.9·108. In 

all calculations the plates are of the same thickness. It is found that the location and size of the plate strongly influence 

the structure of the flow. Changes in the mean flow structure have little effect on the heat flux in the case of a small plate. 

An increase in the size of the plate leads to little change in the heat flux, except for the case when the plate is located near 

the lower boundary. In this case, the Nusselt number is 25% less compared to Rayleigh–Bénard convection. It is found 

that the values of kinetic energy and Nusselt number do not correlate with each other. As the Rayleigh number increases, 

the influence of the plate on the heat flux decreases. It is shown that an insulating plate has no significant effect on the 

heat flux if the height of the plate location is significantly larger (10 times or more) than the thickness of the temperature 

boundary layer. It has been established that the presence of plates in the fluid volume significantly affects the integral 

values of velocity and temperature fluctuations. 
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1. Introduction 

 

Free thermogravitational convection determines intensity and structure of fluid flows in various 

natural and technological systems [1,2]. Dynamics and structure of convective flows are extremely 

various and essentially depend on geometrical parameters of system, boundary and initial conditions 

[3-7]. Particular attention is paid to the problem of heat transfer in the presence of convection, since 

the convective transfer may significantly exceed the heat transfer by conduction. At the same time, 

the influence of insulating bodies, floating or stationary, in the fluid volume, on the heat and mass 

transfer has been relatively poorly studied. 

A surge of interest in the study of free-floating insulating bodies was caused by the problem of 

tectonic plate drift due to convection in the mantle of the planets [8]. The first models of continental 

drift and their interaction with currents in the mantle appeared in the late 80s of XX century [9]. 

Numerical simulations of continental drift and their influence on the formation of thermal plumes 

have been developed in [10-13], and significant progress in development of mathematical models of 

continental motion has been achieved by Russian scientists [14-17]. 

The first successful attempts at laboratory modeling of convection in the asthenosphere were 

realized in the case of fixed thermally insulated surfaces [18-20]. The interaction of insulating bodies 

and convection in the mantle implies the possibility of displacement of bodies under the action of 

viscous stresses on the liquid side. The dynamics of motion of an insulating plate floating freely on 

the surface of a layer heated from below and cooled from above is studied in [21], where it is shown 

that the plate motion is oscillatory. A more complicated case is considered in [22], where the 

insulating plate is immersed to different depths. In [23-25], it was demonstrated that the presence or 

absence of oscillations during the plate motion is determined by its size. In [25], a simple one-

dimensional phenomenological model describing the plate dynamics is proposed. The effect on 

convective flow of a large number of small spherical-shaped bodies with low thermal conductivity 

and a density slightly higher than the liquid density is considered in [26]. Spherical bodies entrained 

by the flow concentrate in different areas on the lower heat exchanger, which leads to a change in the 

direction of large-scale circulation. The dynamics of an insulating plate with different boundary 

conditions (constant temperature or zero heat flow) in a two-dimensional fluid flow with infinite 

Prandtl number value was investigated numerically in [27-29]. Both regular and chaotic modes were 

COMPUTATIONAL 
CONTINUUM MECHANICS 

ВЫЧИСЛИТЕЛЬНАЯ 
МЕХАНИКА СЛОШНЫХ СРЕД  

http://dx.doi.org/10.7242/1999-6691/2022.15.1.7
mailto:vasiliev.a@icmm.ru


A.Yu. Vasiliev et al. Computational Continuum Mechanics. 2022. Vol. 15. No. 1. pp. 83-97 DOI: 10.7242/1999-6691/2022.15.1.7 

84 
 

found, which agrees with the experiment and confirms that complex dynamics is a characteristic 

feature of such systems. 

The important issue of the influence of insulating plates on the heat transfer has been studied much 

less. Thus, the spatial arrangement of the insulating regions at the upper (cold) boundary and the 

corresponding value of the convective heat flux were analyzed in [30-32]. The results obtained turned 

out to be ambiguous. In [30], where large insulated regions were considered, it was shown that the 

integral heat flux is defined by the plate area and is weakly related to their location. On the contrary, 

in [31, 32] it was obtained that the frequency of spatial arrangement of insulating regions, while 

preserving their area, significantly changes the heat transfer: as the frequency increases, it approaches 

the value characteristic of an isothermal boundary. Convective heat transfer in the case of localized 

heating at the lower boundary was studied in [33, 34], where it was revealed that if the size of the 

heated region appreciably exceeds the thickness of the temperature boundary layer, the Nusselt 

number (ratio of total heat flux to the heat conductive flux) depends on the Rayleigh number to a 

degree close to 1/3. The study of convection in a cavity with inhomogeneous (including fractal) 

distribution of heating on the bottom (see [35, 36]) has revealed that the spatial distribution of heating 

elements at a fixed integral heating area significantly affects the structure of the flow and the value 

of heat flux. The presence of heat-insulating regions at both the upper and lower boundaries also 

significantly changes the structure of the flow [37]. 

The problem of heat transfer, which is crucial for natural and technological systems, in the case 

when thermal insulating bodies are located in the fluid volume, has almost not been studied. We can 

only mention the work [38], in which a set of vertical heat insulating plates, serving to destroy the 

main large-scale flow is considered. The main result was unexpected; it is shown that the presence of 

the plates suppresses the large-scale circulation, but practically does not change the thickness of the 

temperature boundary layer and the value of the heat flux. 

Thus, most studies of convection with stationary or moving insulating bodies describe the case 

when the body is located on the upper or lower boundary. In this paper, we consider the influence of 

spatial arrangement of fixed horizontal insulating plate of different size, placed in the volume of 

liquid, on the formation of convective flows and the value of heat flux. 

 

2. Statement of the problem and numerical simulation 

 

Direct numerical simulation of turbulent convection in a rectangular cavity with an insulating plate 

was performed using the freely distributed open-source computational fluid dynamics package 

OpenFoam 4.1. The dimensionless system of equations describing the convective flow of a 

Newtonian incompressible fluid in the Boussinesq approximation was as follows: 
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where x yu w= +u e e  — velocity vector, p  — pressure, Ra  and Pr  — Rayleigh and Prandtl numbers, 

( )T T T− = −   — temperature, , x ye e  — unit vectors in the direction of the x and y axes, 

respectively. As measurement units for the dimensionless equations of thermogravitational 

convection (1) were chosen: the height of the fluid layer H ; velocity fu g H=  ; time f ft H u=

; temperature difference T T+ − = −  between hot (T+
) and cold (T−

) boundaries. The Rayleigh and 

Prandtl numbers were defined as 
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where   — kinematic viscosity,   — thermal diffusivity,   — thermal expansion coefficient, g  — 

acceleration of gravity. 

 

 

Fig. 1. Scheme of the computational domain and coordinate system. 

 

Two-dimensional numerical simulation of convective turbulence in the case of a non-moving 

insulating plate is performed for a fixed value of Prandtl number Pr 6,12= , aspect ratio 5L H = =  

and two values of Rayleigh number: 7Ra 3,9 10=   and 8Ra 3,9 10=  . The scheme of the studied area 

is shown in Figure 1. The purpose of the calculations was to study the effect of the heat-insulating 

plate on the flow structure and heat transfer. Two plates in the form of rectangles of the same height 

0,02h = , but different length: 1 6A l L=   и 1 2A =  are considered. The position of the plate in 

the computational domain was characterized by the coordinates of the center of mass ( )0 0,x y . 

No-slip boundary condition ( 0)=u  is used for cavity boundaries and surface of the plate. The side 

walls of the cavity are adiabatic: 0n  =  and upper and lower boundaries are isothermal: 0 =  

and 1 = . 

The analysis of the convergence of the numerical solution was performed for the largest value of 

the Rayleigh number on grids with the total number of control volumes (CV) 
6 6 60,64 10 ;  10 ;  1,44·10N =  . Comparison of integral Nusselt numbers

,
Nu 1 Ra Pr

S t
w= +  , 

obtained for different grids, showed that values of Nu change very weakly (less than 1%) at 610N 

. Here 
S

  describes averaging over the whole domain. All calculations presented in the paper were 

performed on a multiblock structured grid with 610N = . Table 1 shows the parameters of the 

computational grid and the coordinates of the center of mass of the plates, for which the calculations 

were performed. 

 

Table 1. Parameters of the computational grid and coordinates of the center of mass of the insulating plate ( )0 0,x y . 

Ra  A  K   
B   

xN   u

xN  yN   u

yN  ( )0 0,x y  

3,7·107 

1/6 0,15 0,38 5/3 9/3 23/3 43/3 

(0,625, 1/8) (1,25, 1/8) (2,5, 1/8) 

(0,625, 1/4) (1,25, 1/4) (2,5, 1/4) 

(0,625, 1/2) (1,25, 1/2) (2,5, 1/2) 

1/2 0,15 0,38 5/3 9/3 23/3 43/3 

(1,37, 1/8) (2,5, 1/8) 

(1,37, 1/4) (2,5, 1/4) 

(1,37, 1/2) (2,5, 1/2) 

3,7·108 1/2 0,31 0,77 4/4 5/4 13/4 25/4 (1,37, 1/8) (2,5, 1/8) 

 

The number of CV in the boundary layers (dynamic — uN , and thermal — N  ) satisfied the 

estimate of their minimum quantity proposed in [39]. Direct numerical modeling assumes that the 
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applied grid must resolve the Kolmogorov scale ( )( )
1 41 2Pr Ra Nu 1K H = −  and Batchelor scale

( )( )
1 41 2Pr Ra Nu 1B K H− =  = − . 

In all calculations, the maximum average size of CV ( )
1 2

x y =    did not exceed the scale of 

Kolmogorov and Batchelor. The equations of thermogravitational convection were solved using a 

standard solver buoyantBoussinisqPimpleFoam. The time integration was carried out according to 

the implicit Euler scheme of the second order of accuracy. To discretize the convective and diffusive 

terms, a second-order central difference approximation scheme was used (in OpenFoam this scheme 

is called Gauss linear). To solve the system of linear algebraic equations obtained after discretization 

of the system of equations (1), we used the PBiCG bisector gradient method with the DILU 

preconditioner (for velocity and temperature) and the GAMG method (for pressure). 

 

3. Results 

 

3.1. Rayleigh-Benard convection 

 

The basic case, with which the calculation results in the presence of insulating plates are compared, 

is Rayleigh-Benard convection with homogeneous boundary conditions of the first kind at the upper 

and lower boundaries. At 7Ra 3,9 10=   the mean flow is asymmetrical and represents 5 rolls of 

different sizes, each of which rotates in the opposite direction compared to its neighbors (Fig. 2a). It 

should be noted that for a layer with aspect ratio 8 =  6(Ra 10= , Pr )=   in the presence of a small 

plate floating on the fluid surface, i.e., weakly affecting the structure of the currents, the average flow 

consists of five rolls [27]. Thus, the main flow in the form of several rolls is characteristic of Rayleigh-

Benard convection in cavities with a large aspect ratio in developed regimes. In our study, an increase 

in the Rayleigh number to 8Ra 3,9 10=   changes the flow structure to a four-roll structure (Fig. 2b). 

 

 

The decomposition of the instantaneous velocity fields into spatial modes makes it possible to isolate 

the main modes of the flow and to understand the cause of asymmetry of the mean flow at a low 

Rayleigh number. For this purpose, we used a decomposition into Fourier modes by free-slip basis 

functions [7], which shows its efficiency for studying the dynamics of large-scale circulation in two-

dimensional and quasi-two-dimensional formulations [37, 40]. In spite of the fact that the basis 

functions do not satisfy the non-slip condition at solid boundaries, they adequately describe the flow 

 

 
Fig. 2. Streamlines of time-averaged velocity fields at 

7Ra 3,9 10=  (a) and 
8Ra 3,9 10=  (b); 

velocity magnitude is shown in color. 

a 

b 
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structure and make it possible to determine the modes with the highest energy, which is confirmed by 

the results of POD (Proper Orthogonal Decomposition) analysis [41, 42]. The decomposition has the 

form: 

 

 ( ) ( ) ( ) ( ) ( ),1, , 4 5 sin 5 cos ,x

n
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u x y t A t nx y=    
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t

E A t A t= +   

 

where 
t

  defines time averaging. Figures 3a, b shows the energy of the seven lower modes of flow 

for two values of the Rayleigh number. It can be seen that in the case of 7Ra 3,9 10=  , flow is formed 

as a result of the superposition of the three modes, while for 8Ra 3,9 10=  , there is a single-mode 

flow. The temporal evolution of the basic modes for 7Ra 3,9 10=   is presented in Fig. 3c. The three 

main modes coexist during the entire analyzed time interval, with their amplitudes varying 

appreciably in a non-periodic manner. 

 

 

Figure 4 shows the distribution of the rms (root mean square) temperature pulsations 

( )
2

rms t
t

 = −   and turbulent kinetic energy ( )( )2 21 2 rms rmsk u w=  +   in the cavity. The 

largest pulsations are concentrated in the regions of vertical flows formation (in the places of 

ascending/descending of thermal plumes), with the temperature pulsations being maximal in the area 

of plume breakup, and the velocity pulsations - at the opposite boundary, where the accelerated plume 

hits the boundary. The ascent of a thermal plume leads to destruction of the thermal boundary layer, 

which requires some characteristic time to recover. Then a new thermal plume is formed and 

detached, and the process is repeated. 

The average kinetic energy ( )
2

,

1 2k i
S t

E = u , energy of turbulent pulsations
S

k , energy of 

temperature pulsations 2

rms S
k =   and integral Nusselt number are used as integral characteristics 

of the convective system. The values of the integral characteristics for the two regimes of Rayleigh- 

  

 
Fig. 3. Time-averaged normalized energy of the main modes n n

n

E E  at 
7Ra 3,9 10=  (a) and 

8Ra 3,9 10=   (b); temporal evolution of the amplitudes of the most energetic modes 

( ) ( )
2 2

,1 ,1 ,1

x y

n n nM A t A t= +  at 
7Ra 3,9 10=  (c). 

c 

a b 
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Benard convection are presented in Table 2. An increase in the Rayleigh number by an order of 

magnitude leads to an almost twofold increase in the Nusselt number (by 77%). At the same time, the 

other integral characteristics change much weaker. Somewhat unexpected was the observed  

decrease in the level of temperature pulsations with an increase in the Rayleigh number (by 31%). In 

this case, this is a consequence of the transition to a more stable single-mode flow. 

 
Table 2. Values of integral characteristics in Rayleigh-Benard convection. 

 

Ra  Nu  
310kE   

310
S

k   310k   

3,9·107 21,3 10,5 0,91 1,67 

3,9·108 37,9 13,9 0,10 1,15 

 

3.2. Convection in the case of a small plate A≈1/6 (case I) 

 

The effect on convection in the cavity of a relatively small fixed heat insulating plate ( 1 6A  ) is 

considered. The calculations were performed for different vertical and horizontal positions of the 

plate. Figure 5 illustrates the structure of the convective flow for the nine investigated configurations 

of the computational domain and shows that the plate position significantly affects the structure of 

the mean flow, namely, the number and shape of convective rolls change. Here and below in the text, 

the heat-insulating plate is indicated in black in the figures.  

 

 

   

   

   
Fig. 5. The structure of the middle flow at different locations of the heat-insulating plate, 

7Ra 3,9 10=  . 

 

 

 

 
Fig. 4. Distribution of the rms temperature pulsations 

rms  (a) and turbulent kinetic energy k  (b), 

7Ra 3,9 10=  . 

a 

b 
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Fig. 6. Distribution of the rms temperature pulsations 

rms  with different location of the heat insulating plate,

7Ra 3,9 10=  . 

 

   

   

   
Fig. 7. Distribution of kinetic energy of turbulent pulsations k at different location of the heat insulating plate, 

7Ra 3,9 10=  . 

 

The plate introduced into the flow changes the location of the rising and sinking jets, and as a 

consequence, the areas with high levels of temperature and velocity pulsations (Fig. 6, 7). Spatial 

distribution of pulsations depends on the location of the plate. In the case of
0 1,25x = , 0 0,125y =  

(see middle panels in the bottom row in Fig. 6, 7), the plate is on the way of the descending jet and 

concentrates velocity pulsations on its surface, while in case of 0 0,65x = , 0 0,125y =  (left bottom 

panels), the ascending jet is formed near the edge of the plate, and the highest velocity pulsations are 

seen precisely in this jet, both in the lower and in upper zones.  

 

 

  

  
Fig. 8. Normalized integral values for all locations of the insulating plate at 

7Ra 3,9 10=  : kE
 (a), Nu k


 

(b), k  (c) and k

  (d). 

a b 

c d 
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An important issue is the effect of the horizontal insulating plate on the integral characteristics of 

the flow. Figure 8 shows the values of the integral characteristics for different locations of the 

insulating plate. Change of kinetic energy, Nusselt number, kinetic energy of turbulent pulsations and 

energy of temperature pulsations is more convenient to estimate in comparison with Rayleigh-Benard 

convection, therefore normalized values are given RBC

k k kE E E = , Nu Nu NuRBC = , 

* RBC

S S
k k k=  and RBCk k k

  = . Compared to Rayleigh-Benard convection, the kinetic energy 

decreases from 3% to 16% and the Nusselt number from 1% to 10%. At the same time, the values of 

kinetic energy and the Nusselt number do not correlate with each other. Thus, a significant 

restructuring of the flow in the presence of an insulating plate does not necessarily lead to significant 

changes in the total heat flux, in contrast to its spatial distribution. This can be partially explained by 

the small size of the plate. The presence of a horizontal plate in the volume strongly affects the integral 

values of velocity and temperature pulsations. There is both an increase and a decrease in the average 

kinetic energy of turbulence and the energy of temperature pulsations compared to Rayleigh-Benard 

convection. The maximum increase of 
*k  and k 


 is 100% and 28%, respectively. 

 

3.3. Convection in the case of a large plate A=1/2 (case II) 

 

To answer the question of whether the flow structure and heat transfer are related to the plate size, 

calculations were performed with a larger plate. A significantly larger plate was chosen as the second 

option: 1 2A = . An increase in the length of the plate by almost three times (up to approximately half 

of the layer length) leads to expectedly large changes in the temperature distribution (see Figure 9) 

and flow structure (see Figure 10) compared to a smaller plate. The mean flow in the case of a larger 

plate consists of two or three convective cells. Even when the plate is centered, the mean flow is 

asymmetrical. The lack of symmetry may indicate that the flow is not stationary. 

Figure 11 shows that in the lower plate position ( 0 1 8y = ) the blocking of vertical motions leads 

to a strong suppression of general circulation and convective heat transfer .y t
F w=   As a result, 

due to the conductive heat flux from the lower boundary, a large part of the area under the plate is 

heated to a temperature close to the temperature of the lower boundary. It is important to note that 

when the plate is displaced horizontally, located at a height 0 1 8y = near to the vertical wall, a weak 

circulation flow is formed under the plate, but when the plate is exactly in the center, the average 

circulation is almost absent. At all other locations, there is quite intense asymmetric fluid circulation 

around the plate. When the plate is placed in the middle of the layer height at both horizontal locations, 

despite the circulation around the plate, the temperature under the plate is higher and the temperature 

above it is lower than the average temperature (by about 15-20%). 

 

 

  

  

  
Fig. 9. Average temperature fields at different positions of the thermal insulating plate, 

7Ra 3,9 10=  . 
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Fig. 10. Structure of the average flow at different positions of the heat insulating plate, 7Ra 3,9 10=  . 

 

 

  
Fig. 11. Convective heat flux yF  distribution at 

0 1 8y = , 7Ra 3,9 10=  . 

 

The distribution of temperature and velocity pulsations in the presence of an extended plate is very 

inhomogeneous (see Figs. 12, 13). It should be noted that, while noticeable temperature pulsations 

are observed under the plate (at 0 1 8y = and 0 1 4y = ), large velocity pulsations, on the contrary, are 

characteristic of the region above it (Fig. 13). When the plate is located in the middle height, above 

and below it, not only significant temperature and velocity pulsations are absent, but also mean flows, 

i.e. one can speak about the presence of a stagnation zone near the plate. 

 

 

  

  

  
Fig. 12. Distribution of the rms temperature pulsations rms  with different location of the heat insulating plate, 

7Ra 3,9 10=  . 

It is well known that at the moment of flow restructuring, integral characteristics change 

significantly, so their analysis was performed for quasi-stationary states, in which local small-scale 

fluctuations of velocity and temperature are possible, but large-scale flow restructuring does not occur 

(reorientation, suspension, inversion). An analysis of the integral characteristics in the quasi-

stationary state showed the following (Fig. 14):  
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- when the plate is positioned in the middle of the layer (in height), the horizontal displacement 

significantly affects the mean kinetic energy;  

- the central horizontal location leads to a noticeable increase in the kinetic energy, despite the 

close values of the maximum flow velocity. This is due to the fact that when the plate is close to the 

side wall, all the main motion is concentrated in the opposite half of the layer;  

- in the intermediate case, at 
0 1 4y = , the kinetic energy values for both positions are comparable;  

- when the plate is displaced even more downward, at 
0 1 8y = , the situation changes: the flow 

acquires more energy when the plate is displaced from the center.  

 

  

  

  

  

  

  

Fig. 13. Distribution of kinetic energy of turbulent pulsations k at different location of the heat insulating plate, 
7Ra 3,9 10=  . 

 

  

  
Fig. 14. Normalized integral values for all locations of the heat insulating plate at 

7Ra 3,9 10=  : kE
 (a), Nu k


 

(b), k  (c) and k

  (d). 

a b 

c d 
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It should be noted that the presence of the plate has a stronger effect on the pulsations than on the 

integral characteristics, the level of temperature pulsations and speed pulsations increases 

significantly, especially at 
0 1 8y = . 

Before discussing the effect of plate size on convective heat transfer, let us recall that for case I, 

relatively small changes in the Nusselt number (from 1% to 10%) could be explained by the smallness 

of the plate itself ( 1 6A  ). For case II, the size of the plate is about half the horizontal size of the 

cavity. Despite this, except for the location of the plate near the lower boundary (
0 1 8y = ), the Nusselt 

number variations are also small (from 3% to 9%). The Nusselt number is determined by the thicknesses 

of the temperature boundary layers at the upper and lower boundaries. Accordingly, small variations in 

the Nusselt number indicate that the average boundary layer thicknesses weakly depend on the presence 

of horizontal plates in the fluid volume in the cavity up to the aspect ratio 1 2A = . Since the structure 

of the flow in the presence of a plate is fundamentally different, we can speak of a weak effect of the 

flow structure on the thickness of the boundary layer.  

The physical interpretation of this effect, which goes counter to intuitive assumptions, can be based 

on the fact that the thickness of the viscous boundary layer decreases with the Rayleigh number much 

more slowly than the thickness of the temperature boundary layer [43]. This leads to the fact that the 

temperature boundary layer gradually becomes thinner than the viscous boundary layer. And since the 

flow velocity in the viscous boundary layer is small and decreases rapidly toward the wall, the effect of 

fluid flow on the temperature boundary layer becomes less noticeable as the Rayleigh number increases. 

As a result, for large values of Rayleigh number (more than 106) or the Nusselt number (more than 10), 

the thickness of the boundary layer is determined mainly by the temperature difference between the 

isothermal boundaries and the fluid [34, 44], i.e. weakly depends on fluid circulation. Therefore, in the 

presence of heat-insulating plates in the layer, which significantly affect the flow structure, there is no 

fundamental change in the average boundary layer thickness. It is important to emphasize that this is 

valid only under the condition that the distance from the plate to the boundary is significantly greater 

than the thickness of the boundary layer. 

 

 

  

 

  

 

  

Fig. 15. Mean velocity fields (a), distribution of the rms temperature pulsations rms  (b) and distribution of 

kinetic energy of turbulent pulsations k  (c); 
8Ra 3,9 10=  . 

 

The case when the plate is near the lower boundary ( 0 1 8y = ) requires particular consideration, 

because, as the plate approaches the boundary layer, it begins to directly affect its structure. If the 

plate is in the center, then, as noted earlier, fluid motion and convective heat transfer are blocked 

below it. Due to the conductive heat flux, the liquid layer under the plate heats up to a temperature 

a 

b 

c 
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close to the boundary temperature. As a result, half of the lower heated boundary is effectively 

insulated, providing a decrease in the Nusselt number of about 25% compared to Rayleigh-Benard 

convection. This correlates with a 25% decrease in the total area of the isothermal boundaries, which 

is not accidental. Previously, a similar result was obtained for mixed boundary conditions at the lower 

boundary [35, 36], where the change in the Nusselt number was also proportional to the decrease in 

the total area of the heat exchangers. When the plate is located near the lower boundary, but with the 

offset to the vertical wall (
0 1,37x = ,

0 1 8y = ), a weak mean flow is formed under it, resulting in 

horizontal heat transfer, and the Nusselt number becomes less than for the Rayleigh-Benard 

convection by only 15%. 

An increase in the Rayleigh number leads to a decrease in the thickness of the temperature 

boundary layer. Therefore, at a fixed height of the location of the insulating plate, the ratio of this 

height to the thickness of the boundary layer should increase as the Rayleigh number increases. 

Accordingly, the influence of the plate position on the structure of the temperature boundary layer 

should decrease. In order to check this, calculations were performed for a larger value of the Rayleigh 

number ( 8Ra 3,9 10=  ) and a fixed plate location height (
0 1 8y = ). 

Obviously, an increase in the Rayleigh number leads to a visible restructuring of the flow (Fig. 15) 

and other values of integral characteristics (Table 3). However, the main interest is in the value of 

heat flux. The obtained results confirm the assumptions made above, that the influence of the heat 

insulating plate located at a fixed height decreases as the Rayleigh number increases and the thickness 

of the boundary layers decreases significantly. Thus, while at 7Ra 3,9 10=  the Nusselt number 

decreased by 25%, it changed only by 3% at 8Ra 3,9 10=  . 

 
Table 3: Normalized average values of integral characteristics for two positions of the insulating plate for 1 2A =  at 

8Ra 3,9 10=  . 

( )0 0,x y  Nu
 kE  k 

 k 


 

(1,37, 1/8) 0,97 0,52 4,81 1,32 

(2,5, 1/8) 0,97 0,62 3,84 1,47 

 

The Nusselt number is a characteristic of the total heat flux, but in the case of inhomogeneous spatial 

distribution of the thickness of the temperature boundary layer (and, consequently, of the heat flux), it is 

useful to consider the spatial distribution of such a heat flux, which can be described by the local Nusselt 

number Nul , which gives an estimate of the local thickness of the boundary layer
 : 

 

0

1
Nu , .

2 Nu
l

ly
y



=


=  =


 

 

Figure 16 shows distributions of the thermal boundary layer thickness along the horizontal 

coordinate. The average thickness of the thermal boundary layer for Rayleigh-Benard convection at 
7Ra 3,9 10=  is approximately ( )0 1 2 Nu 1 40 =  . Then at 0 1 8y =  the plate is away from the 

boundary at a distance of five boundary layer thicknesses and has a noticeable effect on it. As the 

Rayleigh number increases to 8Ra 3,9 10=  , the ratio 0 0y   increases up to 10, and the average 

boundary layer thickness becomes comparable to that of the boundary layer in Rayleigh-Benard 

convection. Thus, for the configurations considered, we can conclude that if the value of 0 0y   is of 

the order of 10 or higher, then an insulating plate, even a sufficiently long one, has no significant 

effect on the value of the integral heat flux. 
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Fig. 16. Distribution of the thermal boundary layer thickness along the axis for 1 2A =  at

0 1 8y = : 7Ra 3,9 10= 

(a); 8Ra 3,9 10=  (b); the dashed line shows the average thickness of the temperature boundary layer for Rayleigh-

Benard convection. 

 

4. Conclusion 

 

Based on a numerical study of the influence of a horizontal insulating plate of different size on the 

structure of convective flows and convective heat transfer in a closed, horizontally stretched cavity, 

it is shown that even in the case of a relatively small plate ( 1 6A = ), changing its position 

significantly affects the structure of the flow. Despite the restructuring of the flow, the value of 

integral convective heat flux changes weakly (not more than 5%). The presence of a larger plate in 

the layer ( 1 2A = ) and a change in its location leads to greater transformation of the flow structure. 

Even in this case, however, the changes in the magnitude of the total heat flux, compared to Rayleigh-

Benard convection, are relatively small (from 3% to 9%), except for the plate location near the lower 

boundary ( 0 1 8y = ), when the Nusselt number decreases by 25%. As the Rayleigh number increases 

to 8Ra 3,9 10=  , for the fixed location of the plate, the effect of the insulating plate on the heat flux 

drops sharply. For the system configurations considered, it is concluded that if the ratio of the height 

of the insulating plate to the thickness of the thermal boundary layer is of the order of 10 or higher, 

then the insulating plate, even if sufficiently long, has no significant effect on the value of the integral 

heat flux. 

It was shown earlier [38] that the presence of vertical screens in the cavity, leading to a critical 

restructuring of the flow structure, practically does not change the total heat flux (the Nusselt 

number). The results obtained in this paper allow us to draw a more general conclusion, namely, that 

the total heat flow in closed cavities at sufficiently high values of Rayleigh numbers (over 106) and 

Nusselt numbers (over 10), in contrast to the structure of the flow, is weakly dependent on the 

presence of partitions (vertical or horizontal). However, two important reservations should be made 

about horizontal plates. First, as stated above, they must be offset from the upper or lower boundary 

at a distance greater than the thickness of the boundary layer. Otherwise, they thermally insulate the 

boundary and actually change the boundary conditions. Second, an increase in the size of the 

horizontal plate results in blocking of vertical motions and vertical heat flux, therefore, starting at a 

certain size, there will inevitably be a noticeable decrease in the total heat flux. 
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