
Computational Continuum Mechanics. 2021. Vol. 14. No. 4. pp. 472-484 DOI: 10.7242/1999-6691/2021.14.4.39 

 

Email addresses for correspondence: vadsharif@bk.ru 
 

© The Author(s), 2021. Published by Institute of Continuous Media Mechanics.  

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0),  
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

SUPERCRITICAL CONVECTIVE FLOWS OF MELT WATER  

IN AN OPEN HORIZONTAL RECTANGULAR CAVITY  

WITH A PRESCRIBED VERTICAL HEAT FLUX 
 

V.A. Sharifulin1, T.P. Liubimova2 

1Perm National Research Polytechnic University, Perm, Russian Federation 
2Institute of Continuous Media Mechanics UB RAS, Perm, Russian Federation 

 

The influence of the intensity of heating, expressed by the Grashof number, on supercritical regimes of thermal 

convection of melt water in a horizontal rectangular cavity with an aspect ratio of two is investigated. The thermal 

insulation conditions are satisfied on the lateral solid boundaries, and a constant vertical heat flux is set on the lower solid 

and upper free, horizontal and non-deformable, edges. Provided that the average temperature over the cavity is close to 

the density inversion temperature of water in the cavity, a state of mechanical equilibrium is possible, when a stably 

stratified layer is located on top of an unstable stratified layer. For two cases of the position of the horizontal boundary 

between these layers, the structure of stationary planar supercritical thermal convection is considered. The calculations 

were carried out by the finite-difference method on a square grid with 128 nodes along the horizontal coordinate and 64 

along the vertical one. Calculations have shown that, with an equal thickness of unstable and stably stratified layers, 

supercritical convection in the region up to about six supercriticalities has a two-cell structure in the horizontal direction 

with two (large at the bottom and weaker at the top) vortices in each of the cells. With an increase in supercriticality, this 

two-cell structure turns into a four-cell structure in a hysteresis manner. For the case when the thickness of the stably 

stratified layer is three times less than the thickness of the unstable stratified layer, the supercritical convective flow has 

the general form of a single-vortex cell elongated horizontally. With an increase in the Grashof number up to about a 

hundredfold supercriticality, it remains generally single-vortex and does not experience bifurcations.  
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1. Introduction 
 

The onset of convection in a horizontal liquid layer heated from below with temperature inversion of density 

and free non-deformable boundaries was studied in [1]. The case of isothermal boundaries is considered, and 

a hard excitation of convection is found. The author of the work, G. Veronis, suggested approximating the 

non-linear dependence of water density on temperature by a simple quadratic formula, which in modern 

notation looks like: 

 

 ( )2

21 ,m iT T  = − −  (1) 

 

where m  is the density at iT T= , iT  is temperature of density inversion, 5

2 0,8 10 −=   (°С) –2 is an empirical 

parameter. In this case, we are talking about the behavior of water within the temperature range from 0 to 8°C, 

the inversion temperature in which is 4iT = °C. 

In [2], the case of a given constant heat flux at the lower boundary was considered numerically by a finite-

difference method. The critical Rayleigh numbers turned out to be smaller than those found from the linear 

theory. 

The linear stability of the mechanical equilibrium of a layer with solid boundaries was investigated in [3–

6]. It is shown that the problem of equilibrium stability of a fluid layer with density inversion under the 

condition of solid isothermal boundaries is mathematically equivalent to the problem of stability of the Couette 

flow between rotating cylinders. In this case, the ratio of the rotation speeds of the inner and outer cylinders 

plays a role similar to the role of the ratio of the depth of the stably stratified part of the layer to its total 

thickness. A simple algebraic formula is obtained that relates the Taylor number and the Rayleigh number. In 

[3], the cases of a fixed temperature and a fixed heat flux at the boundaries were considered. Theoretical and 

experimental studies of the influence of density inversion on the occurrence of convection in a horizontal water 

layer with solid isothermal boundaries were carried out in [4]. Both analytical and experimental results have 

shown that the presence of density inversion leads to stabilization of the layer equilibrium. In [5], the influence 

of the position of the density inversion point inside the layer on the critical value of the Rayleigh number and 

the intensity of supercritical convective flows with rectangular (projected onto a horizontal plane) cell shape 
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was studied numerically. To determine the conditions for the occurrence of convection in a horizontal water 

layer near the density extremum point, the equation of state ( )1m iT T


  = − −  was used in [6], based on 

measurements of changes in the density of both pure and salt water. Water with different salinity corresponded 

to different values of parameters   and  . It has been established that the effects associated with the presence 

of density inversion play a stabilizing role. 

The stability of a water layer formed as a result of the melting of ice heated from above by a constant 

radiation flux (a heat flux is specified at the upper boundary) was examined in [7]. The lower boundary of the 

liquid layer had a melting point of 0°C. The temperature dependence of the density was assumed to be cubic. 

It has been theoretically and experimentally shown that the critical Rayleigh number depends on the free 

surface temperature 2T , if 2 8T  °C, and does not depend on 2T  at 2 8T  °C. 

A linear analysis of the equilibrium stability was carried out in [8] taking into account the thermocapillary 

effect and thermal conditions of the third kind at the upper free boundary; the lower boundary was assumed to 

be solid and isothermal. The approximation of the temperature dependence of the density in the form of a cubic 

polynomial adopted in this work made it possible to consider the problem in a wider temperature range than 

with a quadratic dependence. 

The influence of the finite thermal conductivity of arrays was investigated in [3]. An analysis of the case 

of two solid arrays showed that in the presence of a temperature inversion of the density, the final thermal 

conductivity of the arrays, as well as in the absence of inversion, leads to destabilization. The qualitative 

dependence of the critical Rayleigh number on the thickness of a stably stratified layer 1 iR z= −  (to take into 

account the effect of density inversion, we used the dimensionless coordinate of the density inversion point iz

) did not depend on the boundary conditions. The combined effect of both the density maximum and the final 

thermal conductivity of the arrays, at large negative R  ( 1iz  ) led to destabilization of the Rayleigh number 

relative to the Boussinesq limit Ra 1708c = , and with an increase R  (decrease iz ) its stabilization was 

observed. 

In [9] subsequent calculations by the spectral method on the supercomputer at Moscow State University 

(Moscow) are aimed at studying the features of convection propagation with maximum approximation to 

horizontal layers of water located between free and non-deformable planes. The supercritical flow was 

assumed according to the regulations, and for the chosen periodicity of the manifestation of the two main 

branches of hysteresis, solutions were found that have a value of the characteristic scale. The transition to 

chaos through quasi-periodic regimes and intermittency is described. 

The problem of water convection, the density of which depends quadratically on temperature and pressure, 

was considered in [10]. The limits of applicability for convection in Lake Baikal of the Veronis formula (1) 

are determined. For this purpose, the linearization method was used to study the nature of the equilibrium state 

of a horizontal water layer up to 1000 m thick with a free boundary with respect to small disturbances. It is 

found that the state of mechanical equilibrium of the water layer is unstable. Neutral curves are constructed 

and critical Rayleigh numbers are found. A comparison is made with the results of solving a similar problem 

for the limiting case when the density is determined by formula (1). It is shown that the applicability of the 

Veronis expression is limited to a layer depth of up to 150 m, while the average depth of Baikal is 750 m. 

In [11], co-authored by the authors of this paper, it was revealed that in the only known paper [3] devoted 

to the analysis of convection in a horizontal liquid layer with free upper and solid lower boundaries and a 

prescribed heat flux at both boundaries, when deriving linearized equations for the amplitudes of perturbations, 

two terms are lost. As a result of solving the well-formulated problem of linear stability below, it is shown that 

the thermal conditions corresponding to a fixed heat flux contribute to the existence of long-wavelength 

perturbations. Long-wavelength perturbations are not always possible, but only for a sufficiently thick unstable 

stratified layer, namely, for 5 9iz   (here iz  is the thickness of the unstable stratified sublayer, which is 

dimensionless over the height of the entire layer). At 0.61iz  , long-wavelength perturbations are the most 

dangerous. Cellular perturbations are the most dangerous in the region 0.61iz  . The boundaries of stability 

are determined for both types of perturbations. 

In [12], the form of critical perturbations was found in the formulation of [11]. Long-wave disturbances 

have the form of a plane-parallel flow consisting of two or more counter flows. The shape of cellular 

perturbations is an infinite set of identical cells with flat vertical boundaries. In the lower part of each cell, 

there is an intense vortex covering the region of unstable stratification and penetrating into the region of stable 

stratification. For sufficiently small values of iz , one or several increasingly weaker vortices can form above 

this vortex. 
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The studies of instability and the structure of critical perturbations carried out in [11, 12] can be considered 

as the first steps in understanding a more global problem — establishing the structure and regimes of 

convection in elongated horizontal open rectangular cavities with different aspect ratios L  (the ratio of the 

horizontal size to the height) for a given vertical heat flow on horizontal faces. 

An analysis of the literature showed that in cavities filled with a liquid with a linear dependence of density 

on temperature, the characteristic long-wave nature of the instability, elucidated in the framework of the linear 

theory of stability for an infinite layer [13], that is L =  , for , is clearly manifested already in moderately 

elongated cavities: with 4L = , 3L =  and even 2L =  [14, 15]. In such cavities, the supercritical motion in a 

wide range of supercriticality has the form of one large-scale elongated vortex. As the L  increases, critical 

Rayleigh number tends to the value determined by the methods of the linear stability theory for an infinite 

layer. In a significantly elongated cavity ( 5L = ), only the first supercritical motion is large-scale; further, as 

the supercriticality increases, it experiences a number of hysteresis transitions to the cellular form of 

convection. 

Thus, the long-wavelength nature of the instability in a liquid without thermal density inversion takes place 

already in a moderately elongated cavity (with aspect ratio 2L = ). In more elongated cavities, it is also present, 

but in a strongly elongated cavity ( 5L = ) it quickly becomes unstable, and the convection regime changes to 

cellular. 

An analysis of works [11, 12, 14, 15] suggests that 

the long-wavelength nature of the instability in a layer 

of melt water, i.e., in a liquid with density inversion, 

will be found in a moderately elongated cavity with 

aspect ratio 2L = . 

Therefore, the purpose of this work is to study the 

stability of mechanical equilibrium and supercritical 

regimes of fluid convection with thermal density 

inversion in a horizontal cavity with an aspect ratio 

2L =  for two characteristic values of the position of 

the inversion point 0.5iz =  and 0.75iz =  by a finite 

difference method. The choice of values iz  is due to 

the fact that at the first value in an infinite layer the 

nature of the instability is cellular, while at the second 

it is long-wavelength. 

 

 

2. Formulation of the problem and solution method 

 

Let us consider a horizontal rectangular cavity with height h  and width l  (Fig. 1) filled with water and 

located in a uniform gravity field g . A fixed vertical heat flux q  is set on both horizontal boundaries 0,z h=

, and the side boundaries 0,x l=  are thermally insulated. The dependence of density on temperature is 

assumed to be quadratic (1). 

The rectangular right-handed Cartesian coordinate system ( )Oxyz  is defined so that the axis Ox  passes 

along the more heated horizontal boundary, and the axis Oz  passes along the left thermally insulated vertical 

one. The upper bound is assumed to be free, and all other bounds are solid. 

To describe the motion of a fluid, we apply the equations of free thermal convection of a fluid with 

temperature density inversion in the Boussinesq approximation [11]: 

 

 ( )
2

2

1
i

m

p T T
t

 



+  = −  +  − −



v
v v v g , (2) 

 +
T

T T
t




 = 


v , (3) 

 div 0=v . (4) 

 

 
Fig. 1. Problem geometry; the equilibrium 

temperature distribution ( )0T z  is shown by a 

dashed line, and the density distribution 

( )0 z  in the state of mechanical equilibrium 

is shown by a dotted line; dash-dotted line – 

the boundary between stable and unstable 

stratification. 
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Here, p  is the addition to the hydrostatic pressure distribution in a stationary fluid. The coefficients of 

kinematic viscosity  , and thermal diffusivity  , are considered constant. The thermocapillary effect, the 

effects of evaporation and radiation at the upper free boundary are neglected. The estimates obtained in [10] 

show that under conditions of open water bodies (ponds, lakes), the Boussinesq approximation can be used for 

depths of the order of hundreds of meters. 

Let's write the boundary conditions: 

– on thermally insulated vertical walls 

 

 0, : v 0, 0
T

x l
x


= = =


; (5) 

 

– on the solid lower and free upper horizontal faces  

 

 0: v 0,
T

z A
z


= = = −


; (6) 

 
vv

: v 0, 0, 0,
yx

z

T
z h A

z z z

 
= = = = = −

  
. (7) 

  

From the conditions for temperature contained in (5)–(7) (a constant vertical temperature gradient is set on 

the horizontal boundaries of the cavity, and the side walls are thermally insulated), it follows that the amount 

of heat entering the cavity through the lower boundary per unit time is equal to the heat flux through the upper 

boundary. Therefore, the average temperature of the liquid in the layer avT  does not depend on the intensity of 

convection and is determined only by the initial temperature distribution in the liquid. 

The problem (2)–(7) has a solution corresponding to the state of mechanical equilibrium: 

 

 0 =0,  v  (8) 

 0 = ,
2

av

Ah
T Az T− + +  (9) 

 

3

0 3 3

2

/ 21
const

3

av i
m

T Ah T z
p g A h

Ah h
 

+ − 
= − − + 

 
. (10) 

 

According to (9), in the state of mechanical equilibrium, the temperature at the horizontal boundaries is 

constant and is determined from the expressions: 

 

 0 =
2

bottom av

Ah
T T + , (11) 

 0 =
2

top av

Ah
T T − . (12) 

 

We introduce the notation 

 

 
0

0 0

bottom i
i

bottom top

T T
z

T T

−
=

−
. (13) 

 

Substituting here (11), (12) we get: 

 

 
/ 2av i

i

T Ah T
z

Ah

+ −
= . (14) 

 

From this, it can be seen that iz  is a dimensionless parameter and, depending on the ratio of the average liquid 

temperature and the inversion temperature, can take both positive and negative values. 
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Taking into account (14), expression (9) for the equilibrium temperature distribution will be rewritten in 

the form: 

 

 ( )0 = i iT T Ah z z h+ − . (15) 

 

After substituting (15) into (1), we have the density distribution in the state of mechanical equilibrium: 

 

 

2

0 2 2

21m i

z
A h z

h
  

  
= − −     

 (16) 

 

Differentiating this relation with respect to z , we obtain: 

 

 ( )
0

2

22 m i

d
A h z h z

dz


 = −  (17) 

 

As can be seen from formula (17), for 0iz   the entire layer 0 0d dz  , that is, in a fluid at rest, stable 

stratification is realized. At 0 1iz  , only the upper part of the layer is stably stratified iz h z h  , while the 

layer adjacent to the bottom of the cavity 0 iz z h   is stratified unstable (Fig. 1). In this case, iz  the 

dimensionless thickness of the unstable stratified layer has a clear physical meaning and it is also the 

dimensionless coordinate of the boundary between the stably and unstable stratified layers. It also follows from 

(17) that for 1iz  , the entire liquid layer is stratified unstable. 

For the average temperature avT  and iz  the relation is fulfilled: 

 

 ( )iz 1 2av iT T Ah− = − . (18) 

 

Thus, iz , indicating the position of the inversion point in the equilibrium temperature distribution in the liquid, 

is connected by a simple formula with a positively determined average temperature of the liquid, which is a 

parameter of the problem. Therefore, iz  is also a problem parameter that takes both positive and negative 

values. 

Let us introduce vector potentials into consideration: 

 

 rot , rot= =φ v v ψ . (19) 

 

We will assume that the supercritical flow is flat: the y -component of velocity is equal to zero and all variables 

do not depend on the y -coordinate. Therefore, the vector potentials φ  and ψ  will have non zero only y -

components, which in the plane case have the meaning of vorticity and stream function: 

 

 ( ) ( )0, ,0 , 0, ,0 = =φ ψ  (20) 

 

Let us also introduce into the analysis the temperature deviation from the inversion temperature: 

 

 .iT T T= −  (21) 

 

Then, after performing the operation with respect to (2) and using (19)–(20), one can obtain a system of 

equations for thermal convection in variables , , T  : 

 

 Gr ,
T

T
t x z z x x

    


     
+ − =  −

     
 (22) 

 
1

,
Pr

T T T
T

t x z z x

     
+ − = 

    
 (23) 
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 0.  + =  (24) 

 

The tilde sign at T  is further omitted. 

Equations (22)–(24) are written in dimensionless form. For this, the following units of measurement are 

introduced: for time 2h  , for distance h , for temperature Ah , for velocity h , for stream function   and 

for vorticity 
2

h , as well as dimensionless complexes: Pr  =  is the Prandtl number; similarity criterion 

Gr , which is an analogue of the Grashof number and is defined through the physical constants of the problem 

as 

 

 
2 5

2

2

2
Gr

g A h


= . (25) 

 

We also introduce into consideration an analogue of the Rayleigh number Ra  associated with Gr  and Pr  by 

the relation: 

 

 
2 5

22
Ra Gr Pr

g A h


=  = . (26) 

 

We express the velocity components in terms of the current function: 

 

 v ,     vx z
z x

  
= − =

 
 (27) 

 

Then the conditions on the rigid lower and free upper horizontal boundaries take the form: 

 

 

0 : 0, 1,

1: 0, 1,

T
z

z z

T
z

z




 

 
= = = = −

 


= = = = −



 (28) 

 

and the boundary conditions on the solid side boundaries in the new variables (in dimensionless form) will be 

as follows: 

 

 

0 : 0, 0,

: 0, 0.

T
x

x x

T
x L

x x







 
= = = =

 

 
= = = =

 

 (29) 

 

Here L l h=  is the aspect ratio. 

The state of mechanical equilibrium, when the fluid is at rest, is described in new variables and 

dimensionless form by the equations: 

 

 0 0 00, iT z z = = = − . (30) 

 

The expression (18), relating the average temperature of the liquid with the coordinate of the inversion point 

at rest, in dimensionless variables will be rewritten in the form: 

 

 1 2ov iT z= − . (31) 

 

Thus, the solution to problem (22)–(29) is determined by the Prandtl number Pr , Grashof number Gr , the 

coordinate of the inversion point iz  (or the average fluid temperature in the cavity), and the aspect ratio L . 
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The problem (22)–(29) was solved numerically by the finite difference method, all spatial derivatives were 

approximated by central differences on a uniform grid. The grid step was assumed to be 1 64h = . The aspect 

ratio in the calculations presented below was equal to two ( 2L = ). When approximating in time, an explicit 

scheme with a constant time step 2 10h  was used. 

The Poisson equation (24) for the stream function was solved by the successive overrelaxation method. The 

boundary condition for the vorticity on the bottom and side solid walls was obtained using the Thom formulas 

[16]. The method used is described in more detail in [17]. 

 

3. Calculation results 

 

Before performing the main calculations, in accordance with the above method, the formulated model and 

the difference method were verified. To do this, the critical Grashof number was calculated based on the well-

studied problem of plane convection in a square cavity (that is, with an aspect ratio 1L = ) with isothermal 

horizontal and thermally insulated vertical walls in the absence of density inversion. The critical Grashof 

number was found by extrapolating the linear dependence of the square of the stream function on the Grashof 

numbers obtained in calculations on a square grid with a step 1 64h =  towards lower values and then compared 

with the generally accepted value calculated by the methods of the linear theory of stability. This is how the 

critical Grashof number Gr  255cr =  was established. 

It is known that for the case of thermally insulated side walls in a square cavity, the critical Rayleigh number 

rounded to four significant figures is Ra 2585cr =  [18], and the corresponding critical Grashof number at 

Pr 10= , is 258.5. Thus, as a result of the verification analysis, it turned out that the calculated critical Grashof 

number differs from that determined with a high degree of accuracy by the methods of the linear theory of 

stability by less than 1.5%, which indicates the satisfactory accuracy of the used model and the numerical 

method of solution. 

The main calculations were carried out for a cavity with an aspect ratio 2L =  at two values of the position 

of the inversion point: iz =0.5 and 0.75. The Prandtl number was assumed to be Pr 10= . Based on the 

calculation results, for each of the given values iz , the critical Grashof number was found in the region and 

the nonlinear supercritical convection regime was studied at a supercriticality reaching several tens. 

 

3.1. Equal thickness of stably and unstable stratified sublayers 

 

With equal layer thicknesses ( 0.5iz = ) in the state of mechanical equilibrium, the lower liquid layer (

0 0.5z  ) is stratified unstable. On top of it is a stably stratified layer of a liquid. For a cavity infinitely 

extended in the horizontal direction ( L =  ), the state of the rest of the liquid (24) becomes unstable with 

respect to small normal perturbations when the Rayleigh number exceeds a critical value 
4Ra ( ; 0.5) 2.32 10cr  =   [11]. Hence it follows that the critical Grashof number for an infinitely elongated 

cavity and the value of the Prandtl number Pr 10=  adopted in this work is equal to 
3Gr ( ; 0.5) Ra ( ; 0.5) Pr 2.32 10cr cr =  =  . 

Let us consider the effect of a gradual increase in the Grashof number on the stability of mechanical 

equilibrium. The finite horizontal size of the cavity, due to the presence of solid vertical walls that slow down 

the development of perturbations, leads, as a rule, to an increase in the critical numbers for the occurrence of 

convective instability [13]. Therefore, the first series of calculations was carried out for the Grashof number 

Gr 3000=  in the hope that it will exceed the critical, yet unknown, number Gr (2; 0.5)cr  for 2L = . The 

following distributions were set as the initial state: 

 

 
, , ,

0 0 00, 0.5 ,
i k i k i k

cT h k  = = −  =  (32) 

 

The initial value of the vorticity c  at all nodes of the grid was assumed to be 10. At lower absolute values 

of c , for example, at 1c = , the calculations show that the perturbation decays (32) and the equilibrium state 

of rest (30) is established. 

Figure 2a shows the stationary supercritical solution obtained as a result of a numerical calculation of the 

evolution of the initial state (32) with 10c = . The vortex structure of the supercritical flow corresponds to 
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the structure predicted by the linear theory [11, 12] for an infinite layer, i.e., it has a two-tier vertical shape, 

with intense eddies penetrating from the lower unstable stratified layer into the upper, stably stratified layer. 

The nonlinearity leads to curvature of the boundary between the tiers, it becomes wavy. A similar structure of 

supercritical flows was observed for isothermal boundaries in [2], as well as in [19, 20] when studying the 

convection of a vapor-gas mixture, which, like melt water, has an anomalous dependence of density on 

temperature. 

In subsequent calculations, when solving with other values of the Grashof number, the method of 

continuation with respect to the parameter was used. The stationary state found earlier for a certain Grashof 

number 1Gr  was taken as the initial state, then the Grashof number was simultaneously changed by a step 

Gr , and by numerically solving the problem with this state, a new stationary state was obtained for the 

Grashof number 2 1Gr Gr Gr= + . The step size according to the Grashof number Gr  varied from Gr 10 =  

to Gr 500 = . Calculations have shown that such a stepwise increase in the value of the Grashof number from 

Gr 3000=  to Gr 14500=  leads to a smooth change in the structure of the supercritical flow. In each of the 

convective cells, the centers of intense vortices of the lower (stratified unstable) tier move towards the solid 

wall, and in each of the convective cells, the vortices are separated from the lower solid wall, in each cell a 

weak vortex is formed, opposite to the main one (Fig. 2b). The total number of large eddies becomes six. There 

is a strict separation of the flow by a vertical flat boundary into two equal cells (regime I). 

A further increase in the Grashof number causes a bifurcation, which consists in doubling the number of 

convective cells along the horizontal coordinate (Fig. 2b). Such a steady state is achieved by increasing the 

last value of the Grashof number ( Gr 14500= ) from regime I by Gr 200 = . The formation of a stationary 

vortex structure (regime II), shown in Figure 2c, is observed. The intensity of the convective flow in cells 

adjacent to solid vertical walls is noticeably weaker. A further increase in the Grashof number leads to the 

equalization of the intensities of neighboring vortices both in the lower and upper tiers (Fig. 2d). Figure 2d 

shows the stationary state for Gr 20000= . As the Grashof number decreases (at Gr 13000= ), there is a 

transition to the previous regime I with two equal cells. The transition between regimes from I to II and vice 

versa is carried out in a hysteretic manner. 

 

  

 . 

Fig. 2. Isotherms and streamlines of regimes I (a, b) and II (c, d) of supercritical convective flow at 0,5iz =  

for various values of the Grashof number; regime I: Gr 3000=  (a), Gr 14500=  (b); regime II: 

Gr 14700=  (c), Gr 20000=  (d). 

a b 

c d 
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To quantitatively characterize the change in the intensity of supercritical motions with an increase in the 

Grashof number, we use the Gr dependence on the maximum modulo value of the stream function in the cavity 

(Gr)m , and the specific kinetic energy of the convective motion (Gr)E , determined from the expression: 

 

 

1 1

2

0 0 0 0

1 1
(Gr) v

2 2

L L

E dzdx dzdx
L L

= =    . (33) 

 

The calculated dependences (Gr)m  and (Gr)E  for the range of Grashof numbers 0 Gr 20000   are shown 

in Figure 3. At the Grashof numbers 2600 Gr 10000  , the kinetic energy of stationary solutions depends 

linearly on the Grashof number (dependence by the least squares method): 

 

 5 366 10 (Gr 2.56 10 )2.E − −=    (34) 

 

Extrapolating this dependence to zero, we obtain the critical value of the Grashof number 

( ) 3Gr 2; 0.5 2.56 10cr =  . Calculations near this value showed that at Gr 2500=  a small initial perturbation 

decays, and at Gr 2600= , it grows up to the moment when a stationary regime begins to establish, similar to 

that shown in Fig. 2a. Given that in the test calculations described above with a known value of the critical 

Grashof number, the method used showed an accuracy of at least 1.5%, we can conclude that the extrapolated 

value of the critical Grashof number will differ from the true value by less than 2%. In the same range of 

Grashof numbers ( 2600 Gr 10000  ), the root law holds for the maximum modulo value of the current 

function: 

 

 
3 33.46 10 Gr 2.56 10m −=   −  . (35) 

 

Dependencies (34) and (35) are shown in Figure 3 by dashed lines. 

 

  
Fig. 3. Dependences of the kinetic energy (a) and the maximum stream function (b) in regimes I and II of 

stationary supercritical convective motion in the cavity for the case 0.5iz = . 

 

A verification calculation on a finite-difference grid of square cells with a step 1 128h =  for the value of 

the Grashof number Gr 20000=  showed that the flow pattern to the details corresponds to that shown below 

in Figure 4d, and the value of the kinetic energy differs from that obtained on a grid with a step 1 64h =  of 

less than 0.07%. 

 

3.2. A thin stably stratified sublayer over a thick unstable stratified sublayer 

 

Let us consider the case when the state of mechanical equilibrium is realized in the cavity with the lower 

layer consisting of three-quarters of the liquid in the cavity ( 0 0.75z  ),stratified unstable, and on top of it 

a b 
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there is a layer that is three times thinner and stably stratified. With an infinite length of the cavity in the 

horizontal direction ( L =  ), the state of the rest of the liquid (24) at 0.61iz   becomes unstable with respect 

to long-wave perturbations when the Rayleigh number exceeds its critical value, determined by the formula 

[11]: 

 

 
320

Ra ( ; )
5 9

cr i

i

z
z

 =
−

. (36) 

 

From (36) it follows that the critical Grashof number for an infinitely elongated cavity and the value of the 

Prandtl number Pr 10=  adopted in this work is: Gr ( ; 0.75) 165cr  = . As a rule, the finite horizontal size of 

the layer leads to an increase in the critical value of the Grashof number. Therefore, the first series of 

calculations was carried out for the Grashof number Gr 300=  in the hope that it will exceed the critical (still 

unknown) number Gr (2; 0.75)cr . As in the case 0.5iz =  considered above, as the initial state we set 

distributions (32) with a controlled initial perturbation c . Figure 4a shows the stationary solution obtained 

as a result of a numerical calculation of the evolution of the initial state (26) for the specified Grashof number 

with the initial perturbation 10c = . Calculations at significantly lower absolute values of c , for example, 

at 1c = , led to damping of the perturbed state (26). As can be seen from the figure, the supercritical flow is 

single-vortex and fills the entire cavity, which indicates the long-wavelength nature of the instability.  

Calculations have shown that a stepwise increase in the Grashof number from Gr 300=  to Gr 20000=  

does not lead to a qualitative change in the structure of the supercritical flow. It remains single-vortex, which 

confirms its long-wave nature (see Fig. 4b-d). The asymmetry of the flow is due to the beginning of the 

formation of an upward flow in the convective boundary layer near the left vertical wall, as a result, the center 

of the vortex is displaced. The dependences (Gr)m  and (Gr)E  obtained in the least squares calculations for 

the range of the Grashof numbers 0 Gr 10000   are shown in Figure 5. In the region of the Grashof numbers 

250 Gr 2500  , the kinetic energy of stationary solutions depends linearly on the Grashof number: 

 4 296 10 (Gr 2.30 10 )2.E − −=   . (37) 

  

  

Fig. 4. Isotherms (upper rectangle) and streamlines (lower rectangle) of the supercritical convective 

flow at 0.75iz =  for different values of the Grashof number: 300 (a), 1000 (b), 2000 (c), 20000 (d). 

a b 

c d 
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Extrapolating dependence (37) to zero, we find the critical value of the Grashof number 

( ) 2Gr 2; 0.75 2.30 10cr =  . Calculations near this value showed that the initial small perturbation attenuates for 

Gr 200= , and for Gr 250=  increases until the establishment of the stationary regime shown in Fig. 4a for 

Gr 300= . Taking into account the above accuracy of test calculations of the problem for conditions with a 

known value of the critical Grashof number, it can be assumed that the extrapolated value of the critical 

Grashof number differs from the true value by less than 2%. In the same range of the Grashof numbers, the 

root law holds for the maximum current function in absolute value: 

 

 2 210 .1. Gr 2 30 14 06m − − =  . (38) 

 

A verification calculation on a square grid with a step 1 128h =  for the value of the Grashof number 

Gr 20000=  showed that the flow pattern to the details corresponds to that shown in Figure 4d, and the 

maximum value of the kinetic energy differs from that obtained on a grid with a step 1 64h =  of less than 

0.04%. 

 

4. Conclusion 

 

Calculations have shown that in a moderately elongated horizontal cavity with an aspect ratio 2L =  for the 

case 0.5iz =  when the thickness of the unstable stratified layer iz  is equal to the thickness of the stably 

stratified layer 1 iz− , the supercritical flow demonstrates a two-cell structure along the horizontal coordinate. 

The vertical structure of the cells has a complex two-tier character, which changes with increasing heating 

intensity. At 0.75iz = , the structure of the supercritical flow is simple, single-vortex, smoothly deforming 

with increasing heating intensity. 

At equal thicknesses of stably and unstable stratified layers ( 0.5iz = ), the two-cell supercritical flow in the 

region of approximately six-fold supercriticality passes in a hysteretic manner into a four-cell flow. When the 

thickness of the stably stratified layer 1 iz−  is three times less than the thickness of the unstable stratified layer 

0.75iz = , the supercritical convective flow as a whole takes the form of a horizontally elongated single-vortex 

cell. As the Grashof number increases to a value corresponding to about a hundredfold supercriticality, the 

flow remains single-vortex and does not experience bifurcations. 

Note that with an increase in the intensity of heat transfer through the layer in the central region of the 

cavity near the surface and bottom, a pronounced plane-parallel flow is formed (see Fig. 4d). Therefore, in the 

future, it is necessary to evaluate the stability of this plane-parallel flow with respect to plane cellular 

perturbations. 

  

Fig. 5. Dependences of the kinetic energy (a) and the maximum stream function (b) of stationary 

supercritical convective motion in the cavity for the case 0.75iz = . 

a b 
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Calculations have shown that at Grashof numbers exceeding 20000 by 10–20%, oscillatory convection 

modes arise, for the consideration and classification of which it is planned to conduct additional studies, in 

which the thermocapillary effect at the free boundary is supposed to be taken into account. Possibly, it can 

lead to the emergence of a new mechanism of cellular instability. 
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