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We study the non-isothermal diffusion transport of a poorly soluble substance in a porous liquid-

saturated medium being in contact with the reservoir of this substance. The surface temperature of a half-

space porous medium oscillates in time, which creates a decaying temperature wave propagating deep into 

sediments. Since the solubility exponentially strongly depends on temperature, a decaying running 

solubility wave forms in the porous medium. In such a system, the zones of saturated solution and non-

dissolved phase coexist with the zones of undersaturated solution. The effect is considered for the case of 

annual oscillation of the surface temperature of water-saturated ground being in contact with atmosphere. 

We reveal the phenomenon of formation of a near-surface bubbly horizon due to the temperature oscillation 

for one- and two-component solutes. In the case of a two-component solute, the solubility depends on the 

composition of the nondissolved phase, which necessitates the construction of a corresponding 

mathematical model of dissolution of multicomponent mixtures. We develop an analytical theory of the 

phenomenon of formation of the bubbly horizon. In both analytical theory and numerical simulations, 

the temperature dependence of the molecular diffusion coefficient is taken into account. In the presence of 

a propagating temperature wave, the nonlinear interaction between this dependence and the temperature 

dependence of the solubility creates an additional nonzero contribution to the mean-over-period mass flux. 

For multicomponent solutions, we report the formation of a diffusive boundary layer, which is not possible 

for single-component solutions. We construct an analytical theory for this boundary layer and derive 

effective boundary conditions for the problem of the diffusive transport beyond this layer. Theoretical 

results are in fair agreement with the results of numerical simulation. 
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1. Introduction 

 

The process of diffusion transfer in bubbly media [1–6] and media with a condensed insoluble phase [3, 7–

9] is of particular interest because it reveals unique features both in isothermal and nonisothermal conditions. 

In such systems, the insoluble phase makes the local solute concentration equal to the solubility. The 

concentration of the dissolved substance is no longer a “free” variable, but it becomes a function of temperature 

and pressure. At the same time, the nonzero divergence of the solute flux due to the solubility gradient does 

not change the concentration of the trapped solute, but redistributes the mass of the insoluble phase. Thus, in 

determining the dynamics of systems with an insoluble phase new phenomena and mechanisms come into play 

that never occur in undersaturated solutions. They are especially pronounced in systems in which the 

undissolved phase is immobilized (for example, captured in a porous medium), provided that the solubility is 

low [4]. For the immobilized insoluble phase, mass transfer occurs only through the solution and, when the 

solubility is low, the mass accumulated in the insoluble phase can be several orders of magnitude greater than 

the dissolved mass. 

The influence of surface temperature fluctuations, which creates a solubility wave, on diffusion transfer in 

a porous medium, where the undissolved phase is present everywhere, was shown in [5]. However, systems 

where undissolved phase zones can coexist with unsaturated solution zones, demonstrate essentially more 

complex dynamics. A porous medium saturated with a liquid in contact with a large volume of a weakly soluble 

substance (e.g., with the atmosphere) is a striking example of such a system. In this paper, we consider the 

effect of surface temperature oscillations on diffusion transfer in a half-space of a porous medium in contact 

with a large volume of a weakly soluble substance. 

From the mathematical point of view, the contact with the atmosphere is taken into account through the 

boundary condition, according to which the concentration of the dissolved substance at the contact boundary 

is assumed to be equal to the solubility at any time. In this paper, it will be shown that the temperature wave 

leads to the formation of a near-surface bubble horizon and oversaturation of the medium with atmospheric 
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gas compared to the period average solubility. In particular, the net mole fraction (undissolved phase + 

solution) of gas molecules in the pores near the surface is equal to the maximum solubility for the period. 

The described phenomenon is important for systems with different origins of surface temperature 

fluctuations, including technological systems (filters, porous bodies of nuclear and chemical reactors, and 

others). However, for the sake of certainty, let us focus on the case characterized by a hydrostatic pressure 

gradient, since this is the state of geological systems in which pressure doubles at a depth of 10 meters, which 

leads to a significant change in solubility. 

The effect of enhanced filling of the water-saturated soil with atmospheric gases creates more favorable 

conditions for local flora and fauna and affects the conditions of many geochemical processes. Thus, methane 

gas is released from methane hydrate deposits in the bottom sediments of water bodies under the influence of 

temperature waves, which is of interest in the context of natural Glacial cycles [10] and potential global climate 

change [11]. 

 

2. Diffusion in saturated multi-component solutions 

  

2.1. Physical and mathematical models 

  

 The problem under consideration is conveniently described in terms of the molar concentration of the 

dissolved substance, which is the amount of solute per 1 mole of solvent. For a one-component ideal gas in 

thermodynamic equilibrium, the molar solute concentration in contact with the gas phase (solubility) is 

determined according to the Henry's law [12]; 

 

 (0) ,H sP K X=  (1) 

 

where P  is the pressure and HK  is the Henry's law constant. According to the scale particle theory [13],  
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Here T is the temperature; 0T  and 0P  are the reference values (their choice is determined solely by the 

convenience of calculations); ( )(0)

0 0,X T P  is the solubility at reference temperature and pressure; the parameter 

i Bq G k − , where iG  is the interaction energy of the solute molecule with the surrounding solvent molecules, 

and Bk  is the Boltzmann constant, is provided in the Table for several typical gases. The scaling particle theory 

makes it possible to find q  and ( )(0)

0 0,X T P  from the first principles, while equation (2) is more general. With 

empirically determined q  and ( )(0)

0 0,X T P , equation (2) is applicable for moderate fluctuations in temperature 

and pressure, at which the gas can be considered ideal (usually at pressures of up to several tens of 

atmospheres). 

In multicomponent gases, each gas component in the solution creates a partial pressure jP  in the gas phase 

according to 

 

 ( ), , ,j H j s jP K T X=  (3) 

 

where ,H jK  is the Henry’s law constant of specie j , ,s jX  is the concentration of the solution of specie j . For 

the molar fraction jY  of the j -th component in the gas, 

 

 ,j jP PY=  

 

and pressure jj
P P= . Thus, 1jj

Y = . 

Under normal conditions, the solubility of typical gases (see Table) is so low that when the dissolved 

molecules form gas bubbles, the volume fraction of these bubbles in the liquid inside the pores will be 

negligibly small. Consequently, it is convenient to quantify the composition of the liquid in the pores using 
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,s jX , 
,b jX  and 

, , ,j s j b jX X X = + , where 
,s jX  is the number of molecules j  in the solution divided by the 

total number of molecules in the liquid and gas phases, 
, jX

 is the number of molecules j  in the gas phase 

(bubbles) divided by the total number of molecules, and 
, jX

 is the net molar fraction of the substance in the 

liquid inside the pore. Since the volume fraction of the gas phase in the pores is small, 
,s jX  is almost equal to 

the molar solute concentration, the quantitative discrepancy between 
,s jX  and the corresponding molar 

concentration can be neglected. 

Table. Chemical physical properties of solutions of nitrogen, oxygen, methane and carbon dioxide in water 

               Component 

 

Parameter  
2N  2O  4CH  2CO  

i Bq G k= − , К 781 831 1138 1850 
(0)X 105 (20°С , 1 atm) 1,20 2,41 2,60 68,7 

dR 1010, м 1,48 1,29 1,91 1,57 

 105, Па·с 9,79 16,3 28,3 4,68 

Note: Equations (1), (2) with the values q  and ( )(0)

0 0,X T P  are correspond to the experimental data from 

[14–16]. 

 

2.1.1. Solubility of two-component gas 

 

Let us consider a two-component gas. Such a problem is especially relevant for modeling the Earth's 

atmosphere, where nitrogen and oxygen make up 99%  of the entire molar composition. If the composition of 

the liquid in the pores ( ,1X   and ,1X  ) is known, one can estimate whether a gas phase will form, and calculate 

the composition of the solution and the gas phase. For the gas phase formation, the maximum solute 

concentrations ( ), ,max s j jX X=  must be sufficient to create a vapor pressure exceeding the pressure 

( )1 2max P P+ . According to equation (3), the condition for the gas phase formation is 

 

 ,1 ,1 ,2 ,2 .H HK X K X P +   (4) 

 

When the gas phase forms, its equilibrium composition is determined by Eq. (3); 

 

 , ,H j s j jK X PY=  (5) 

and 

 , , , ,s j b j jX X X+ =  (6) 

 ,1 ,2 1 2 ,b bX X Y Y=  (7) 

 1 2 1.Y Y+ =  (8) 

 

With 1,2j = , the system (5)–(8) gives six equations for six unknowns ,s jX , ,b jX , jY  and has a unique 

solution 
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 (9) 

 ( )(0) (0)

,2 ,2 ,1 ,11 ,s s s sX X X X= −  (10) 

 

where (0)

, ,s j H jX P K  is a solubility of a one-component gas. The solution (9), (10) makes physical sense when 

condition (4) is satisfied; under this condition, equations (9), (10) allow calculating the local equilibrium state 

for given ,1X   и ,2X  . 
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2.1.2. Temperature and pressure fields 

 

Geological systems are usually much more homogeneous in the horizontal directions than in the vertical. 

Therefore, we limit our consideration to the one-dimensional case, assuming that the porous medium and the 

forming structures are homogeneous in the horizontal directions. We assume that the z -axis is directed 

downward, and its origin is at the surface of the medium. 

Let us analyze the propagation of a temperature wave in a porous medium. We will consider harmonic 

oscillations of the surface temperature 0 0 cosT T t= + , where 0T  is the average temperature, 0  is the 

oscillation amplitude,   is the cyclic frequency of temperature oscillations. Thus, for example, annual 

fluctuations in surface temperature deviate only slightly from the harmonic approximation (see, for example, 

[20]). Heat diffusion equation T t T  =   with no-heat-flux condition deep under the surface (at infinity) 

and imposed surface temperature yields 

 

 ( ) ( ) ( )0 0, cos , ,2kzT z t T e t kz k  −= + − =  (11) 

 

where   is the heat diffusivity and z  is the distance from the surface of the porous medium. The pressure field 

is assumed to be hydrostatic: 

 

 0 ,P P gz= +  (12) 

 

where 0P  is the atmospheric pressure,   is the density of the liquid, and g  is the gravity acceleration. 

 

2.1.3. Diffusion transport equations 

 

Since the insoluble phase cannot move in the pores of the medium, the mass is transferred exclusively by 

molecular diffusion and is described by the equations 

 

 
,

, ,
j

j s j

X
D X

t z z

   
=  

   
 (13) 

 

where jD  is the effective coefficient of molecular diffusion of specie j . Compared to the molecular diffusion 

coefficients in the bulk of a pure liquid ( mol, jD ), the effective coefficients are affected by the geometry of the 

pore network (tortuosity of the pore channels) and the adsorption of diffusion agents on the pore matrix. On 

the time scales of interest in this paper, adsorption does not lead to anomalous diffusion; it only changes the 

effective rate of normal diffusion [21]. Although the importance of the thermal diffusion effect on geological 

time scales has been shown for gases [4] and methane hydrates [8, 9], it can be neglected when studying 

diffusion transport in the system under consideration [5]. Concentrations of dissolved substances are defined 

by equations (9), (10), if condition (4) is satisfied (when the gas phase is formed). Otherwise, it is equal to total 

molar fraction , jX , in this case, , 0b jX = . 

Equation (13) is accurate if the macroscopic porosity is spatially uniform and the undissolved phase 

occupies a negligible part of the pore volume, which is true for porous media.  

At the upper boundary of the medium there is contact with the atmosphere. This means that 0j jY Y= , where 

0jY  is the molar fraction of the component in the atmosphere, and, therefore, 
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( )( )
0 0
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We assume the absence of both flux and concentration of the undissolved phase deep below the surface: 
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Note that two boundary conditions are required for z →+ . However, due to the specifics of the problem 

for 0z = , one boundary condition (14) is sufficient. Indeed, since ( ), 0s jX z =  cannot be less than the 

solubility, the value of ,b jX  at the point 0z =  does not affect the evolution of the distribution of the dissolved 

phase, so the condition for it is redundant.  

In the general case, all material characteristics of liquids and solutions are functions of temperature and 

pressure. However, the possible relative changes in the absolute temperature are quite small. Therefore, we 

can neglect fluctuations in the values of the parameters that are polynomially related to temperature, and 

consider the non-stationarity for only the parameters that depend exponentially on temperature. These 

parameters depend on the Henry constant (2) and the molecular diffusion coefficient jD . The only parameter 

sensitive to pressure is the solubility of the gas (see equation (3)). 

 

  

Let us use the following dependence of molecular diffusion on temperature [22]; 

 

 ( ),

,

,
2 2 3

jB
mol j

d j j

k T
D T

R

 
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+
=

+
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Fig. 1. Profiles of the oscillating solubility of a single-component gas (nitrogen) (0)X  formed during 

the passage of an annual temperature wave in flooded soil at 0 300T = K, 0 15 = K at different times 

(dash-dotted lines): summer ( )0 0z = = , autumn ( )0 2z = = , winter ( )0z = = , 

spring ( )0 3 2z = = ; the solid line is the molar concentration of the solution; dotted line is the net 

molar fraction of nitrogen in pores X . 
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 where   is the dynamic viscosity of the solvent, 
,d jR  is the effective radius of the solute molecules with the 

coefficient of sliding friction 
j , 

, 3j d j jR =  ((equation (16) with the values of the effective radius dR  and 

parameter   of the solute molecules given in the table corresponds to the experimental data from [17–19]). 

The dependence of dynamic viscosity on temperature can be described by the modified Frenkel formula [23] 

 

 ( ) 0 exp .
a

T
T

 


=
+

 (17) 

 

For water, the parameter 5

0 2,42 10 −=  Pa∙s, 570Ba W k= = К (W  is the activation energy) and 

140 = − К. For determining the effective diffusion coefficient 
jD , we assume that its relative change is 

related to temperature in the same way as 
,mol jD . The parameter values for aqueous solutions of typical gases 

are given in the table. 

 

2.2. Numerical simulation 

 

For the numerical simulation, the spatial coordinate was discretized so that the zone of penetration of the 

undissolved phase L  had at least 200 nodes. Simulations demonstrated that fluctuations in the concentration 

fields of the solution components weakly penetrate beyond this zone, and it is sufficient to set the condition 

for the absence of a diffusion flux at a double depth as a condition at infinity. At the current time step for the 

temperature field (11), the fields of Henry's constants (2) were calculated for each of the mixture components. 

Fields ,1sX  and ,2sX  on the surface 0z =  were set equal to the solubility of the corresponding component at 

the current time according to (3). In the remaining nodes, the presence of the undissolved phase (4) was 

checked for the current fields ,1X   and ,2X  . If the undissolved phase was missing, the equalities ,1 ,1sX X=  

and ,2 ,2sX X =  took place. Otherwise, the concentration ,1sX  and ,2sX  were calculated by equations (9) and 

(10). Then, using the difference scheme of equation (9), the fields ,1X   and ,2X   were calculated for the next 

time step from the current fields ,1sX  and ,2sX . 

At the first stage, to illustrate the mechanisms of the nonstationary behavior of the system, let us discuss 

the results of numerical simulation for a single-component atmosphere consisting exclusively of nitrogen. The 

simulation shows that for any initial state, after the completion of the transition process, the porous medium 

passes into a single stable time-periodic mode, shown in Figure 1.  

The linear increase in solubility with depth (created by the hydrostatic pressure gradient) is modulated by 

the temperature wave (11). The oscillating profiles of solubility (1), (2) for the temperature wave (11) and 

pressure (12) are plotted in Fig. 1. The oscillations of the solubility profile create an almost frozen mole 

fraction ( )X z
 profile over time. The molar fraction of the substance in the bubble phase ( )bX z  is equal to 

the difference between the profiles ( )X z
 and ( )sX z . The mole fraction profile ( )X z

 almost reaches its 

maximum solubility (at minimum temperature in winter) near the surface ( 0z = ); here the bubbly fraction 

exists for almost the entire year, with the exception of the short coldest period. Moreover, ( )X z
 

monotonically decreases from the depth, where the bubble phase is present, to the depth, where the bubble 

phase never appears. Further, ( ) ( )sX z X z =  is almost homogeneous and only slightly changes throughout 

the year. The irregularity of the profile ( )X z
 in this zone decreases rapidly with depth. The asymptotic value 

X  is close to the average annual gas solubility on the surface. 

The mole fraction profile is almost constant throughout the year, since the molecular diffusion is 3 orders 

of magnitude smaller than the thermal diffusivity, which means that the diffusion redistribution of mass is a 

slow process compared to the rapid temperature (and hence solubility) oscillations. This well-defined division 

of time scales allows developing an analytical theory of the process, describing the mechanisms of formation 

of the bubble horizon. Numerical simulation results also become clearer in the context of this theory. 

In the case of a two-component atmosphere, the system behavior becomes more complicated since the 

solubility of the components depends on temperature in different ways and reacts differently to a temperature 

wave, and the substances themselves diffuse at different rates. One of the main manifestations of this 

complication is the formation of a diffusion boundary layer in a thin near-surface layer of a porous medium,  
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which can be seen in Fig. 2. Beyond this boundary layer, the behavior of a two-component medium is similar 

to that of a one-component medium with some effective parameters. In this case, the diffusion boundary layer 

introduces nonobvious boundary conditions for this effective single-component medium. In numerical 

simulations we took into account higher thermal diffusivity of a water-saturated porous medium compared to 

water and a decrease in effective diffusion due to the complex geometry of pore channels and blockage of 

some of them; it was assumed that , ,0,01eff j eff mol jD D = . The results are presented in Fig. 2. 

 

 

3. Analytical theory 

  

To develop an analytical theory, we will assume that temperature fluctuations are small. It is more 

convenient to start with the basic physical equations and use the smallness of some quantities in the derivation 

process than to take equations (9), (10) as a basis, and simplify them for the case of small oscillations.  

Let us consider two-component gas bubbles in a liquid under a hydrostatic pressure gradient and 

nonisothermal conditions. The locally equilibrium partial pressure jP  in the gas phase, which is in contact 

with a solution of a specie j  at its molar concentration ,s jX , is  

 

 , ,( ) ,j H j s jP K T X=  (18) 

 

where ,H jK  is the Henry's constant for the specie j . For the oscillating temperature 0 0 cosT T t= +  at the 

interface between bottom sediments and the atmosphere, the temperature field inside the sediments is 

 

 
 

 

Fig. 2. Profiles of the molar concentration of a two-component gas (a mixture of nitrogen and 

oxygen) ,1sX  and ,2sX  are plotted with the solid lines (the upper one coresponds to nitrogen, the lower 

one corresponds to oxygen) at 0 300T = K, 0 15 = K at different times: summer ( )0 0z = = , 

autumn ( )0 2z = = , winter ( )0z = = , spring ( )0 3 2z = = ; the net molar fraction of 

nitrogen ,1X   and oxygen ,2X   in pores are plotted with the dotted lines. 
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 ( ) ( ) ( )0 0 0 0 0, , cos cos ,kz kzT z t T z t T e t kz T e − −= + = + − = +  (19) 

 

where t kz = −  is the phase of temperature oscillation, ( )2k  = , z  is the distance from the surface 

of porous medium,   is the heat diffusivity. Thus, locally equilibrium concentrations of solutes 
,s jX  in the 

presence of bubbles of a two-component gas obey the equation 

 

 ( ),1 ,1 ,2 ,2 0 1 ,H s H sK X K X P bz+ = +  (20) 

 

where 0P  is the atmospheric pressure, 0lb g P= , l  is the liquid density, g  is the gravity acceleration. Let 

us introduce the notation 

 

 
,

0

H j

j

K
K

P
=   

 

and linearize the dependence of Henry's constants on temperature: 

 

 ( )( )( )2

0 1 ,j j j jK K a a= + +   (21) 

 

where ( )0 0 ,j jK K T=  

0

1 j

j

j T

K
a

K T

 
=  

 
. 

The ratio of the number of molecules in the gas phase is ,1 ,2 1 2b bX X P P= . In accordance with equation 

(18), one can get 

 

 
,1 ,1 1 ,1

,2 ,2 2 ,2

.
s s

s s

X X K X

X X K X





−
=

−
  

 

When the relative changes in solubility are small, the left side of the last equality is the ratio of small 

quantities and the right side is the ratio of non-small quantities, the values of which are slightly perturbed by 

the change in jK  and pressure. Therefore, we can approximately assume the constancy of this ratio, which 

means the constancy of the composition of the gas phase, as was observed in the numerical simulation; 

 

 
,1 ,1 10

,2 ,2 20

,
s

s

X X Y

X X Y





−


−
 (22) 

 

where 0 0 , 0j j s jY K X=  is the molar fraction of specie j in atmosphere. One can notice, that 

 

 10 20 1.Y Y+ =   

 

Let us consider the deviation of the mass distribution of gas in liquid in pores from the state without 

temperature oscillations; 

 

 
0 0

0

, , , 00 0
0

.
j

j s j s j

j

Y
X X X

K
  =  =

= = =   

 

Then, 

 

 ~

, , 0 , ,j s j jX X X = +   

 ~

, , 0 , .s j s j s jX X X= +   
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In terms of deviations ~

, jX  and ~

,s jX , equation (20) to leading order reads 

 

 ~ ~

10 ,1 20 ,2 0 ,s s j j

j

K X K X bz a Y+ = −   (23) 

 

and equation (22) yields 

 

 ~ ~ ~ ~

20 ,1 10 ,2 20 ,1 10 ,2 .s sY X Y X Y X Y X − = −  (24) 

 

Equations (23), (24) form a self-consistent system for ~

,s jX  as a function of   and ~

, jX . Note that equations 

(23), (24) are valid for the zone of sediments, where , jX  is sufficient for the formation of the gas phase, i.e., 

in accordance with equation (23), ( ) . The value of , jX  is determined from the following equation; 

 

 ( )~ ~

10 ,1 20 ,2 0.j j

j

K X K X bz a Y  + = −   (25) 

 

For ( ) , all guest gas molecules are dissolved and ~ ~

, , .s j jX X=   

The transport of guest molecules is carried out through the liquid phase due to the molecular diffusion of 

the solution. Due to the smallness of the ratio of the coefficients of molecular diffusion and thermal diffusivity 

in liquids, the profiles of the concentrations , jX  are almost “frozen” on the time scale of one period of 

temperature oscillation. Therefore, it suffices to calculate the molecular diffusion flux averaged over a period. 

In the zone of a porous medium, where bubbles appear on a certain part of the oscillation period, one obtains 

 

 

12

1 2

~ ~

, ,1 1
.

pt tt

s j j

j j j

p pt t

X X
J D dt D dt

t z t z

+


    

= − + −          
   (26) 

 

Here 2pt  =  is the oscillation period; 1 2t t  are the time points between which the local temperature is 

sufficiently high, ( ) , so that not all of the guest gas molecules can be dissolved and the solution flow 

is controlled by the concentration gradient of the dissolved substance ~

,s jdX dz , described by the equation 

system (23), (24). For the rest of the period, the equality ~ ~

, ,s j jX X=  is true, and the solute flux is controlled 

by concentration gradient of guest molecules. Equation (26) can be recast in terms of the phase of temperature 

fluctuations: 

 

 

2~ ~

, ,1 1
.

2 2

s j j

j j j

X X
J D d D d

z z

  

 

 
 

 

 

+



−

    
= − + −          

   (27) 

 

4. Diffusion boundary layer 

 

For one-component gas, the assumption of “frozen” profiles , jX  is accurate [6], since the solubility profile 

is strictly determined by temperature and pressure, and diffusion transfer along the solubility gradient is slow. 

A diffusion boundary layer is not formed near the surface. The case of a two-component gas turns out to be 

significantly different, because changing the composition of the gas affects the solubility, and the concentration 

profiles of the dissolved substances depend not only on the temperature and pressure fields. Indeed, Fig. 2 

shows a diffusion boundary layer with short-wave oscillations near the surface, which are never observed in a 

one-component gas. This boundary layer must be taken into account, since inside it the profiles , jX  are 

actually “not frozen”, although outside it they can be considered “frozen”. The diffusion boundary layer can 

affect the effective boundary conditions of the concentration fields in the zones of “frozen” profiles. 
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Since the diffusion boundary layer is localized near the surface on an incomparably smaller scale than the 

scale of the temperature wave, we can assume the spatial homogeneity of the temperature field, 

( ) 0, cosz t t= , and neglect the hydrostatic pressure gradient. 

Diffusion transport is carried out through the solution, while the diffusion coefficients are spatially 

homogeneous (for a uniform temperature field); 

 

 ( )
2

~ ~

, ,2
.j j s jX D X

t z


 
= 

 
 (28) 

 

Numerical simulation shows that in the diffusion boundary layer with a spatially homogeneous solubility 

field oscillating in time, the solute is undersaturated (the bubble phase disappears) only during a short part of 

the oscillatory cycle, and this part tends to zero when the ratio jD   tends to zero. Therefore, we can 

approximately assume that the bubble phase is always present, and the concentration fields ~

,s jX  obey 

equations (23) and (24). 

In the absence of a hydrostatic pressure gradient, equations (23) has the form 

 

 ~ ~

10 ,1 20 ,2 12 ,s sK X K X a+ = − 
 

(29) 

 

where 

 

 12 10 1 20 2 .a Y a Y a= +  (30) 

 

Equations (29) и (24) yield 

 

 ( )~ ~ ~

12 ,1 10 12 20 20 ,1 10 ,2 ,sK X Y a K Y X Y X = − + −  (31) 

 ( )~ ~ ~

12 ,2 20 12 10 20 ,1 10 ,2 ,sK X Y a K Y X Y X = − − −  (32) 

 

where 

 

 12 10 10 20 20 .YK Y K K= +  (33) 

 

Substituting (32) and (33) into equation (28) for 1,2j =  yields  

 

 ( )
2

1 20
,1 20 ,1 10 ,22

~

2

~

1

~ ,
D K

Y Y
t z

X X X
K

  

 
= −

 
  

 

 ( )0

~ ~ ~

12

2

2 10
,2 20 ,1 1 ,22

.
K

D K
Y Y

t z
X X X  

 
= − −

 
  

 

The latter equation system means, that the field 

 

 ( ), . . 2 10 ,1 1 20 ,

~

2

~ ~

b lX z D K D KX X  +  (34) 

 

remains constant over time and 

 

 ~
2

,2

~

, 12 ,res resX
t z

D X 

 
=

 
 (35) 

 

where 
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1

~

, 20 ,

~

0

~

1 ,2 ,resX Y YX X   −  (36) 

 

 2 10 10 1 20 20
12

12

.D
D K Y D K

K

Y+
   

 

The original variables can be expressed from 
.

~

, .b lX
 and 

,

~

resX
 as follows; 

 

 
2

~

10 , . . 1 20 ,

,1

1 0 20 2 10 10

~

~ ,
b l resX X

X
Y D K

D K Y D K Y

 



+
=

+
  

 

 
2

~

20 , . . 2 10 ,

,2

1 0 20 2 10 10

~

~ .
b l resX X

X
Y D K

D K Y D K Y

 



−
=

+
  

 

The solution of equation (35) is a wave that decays exponentially with z  (which remains accurate for time-

dependent ( )12D  ). Therefore, outside the diffusion boundary layer 
,

~ 0resX = , and the fields ,

~

jX  are 

determined by the fields ~

, . .b lX
. For the surface, ( ), 0 0 0

~ 0j j j jX Y a K =   (which corresponds to the maximum 

value of the solution concentration for the period). Thus, 

 

 
, . . 2 10 1 0 1 20 2 0

~

b l D Y aX DY a  + =   

 

and for the surface, immediately behind the diffusion boundary layer, 

 

 
( )0 2 10 1 0 1 20 2 0~

,

2 10 10 1 20 20

.
j

j

Y D Y a DY a
X

D K Y D K Y


+

 + 
=  (37) 

 

Equation (37) provides effective boundary conditions at 0z =  for solutions with a “frozen” profile outside the 

diffusion boundary layer. 

 

5. Transport processes beyond diffusion boundary layer 

 

5.1. The case of small solubility oscillation amplitude and bubbly horizon penetration depth 

 

For a better understanding of the system behavior, it is convenient to consider the simplest case that admits 

an analytical solution. To do this, we assume not only the smallness of fluctuations in solubility and the 

molecular diffusion coefficient, but also take into account the smallness of the penetration depth of the bubble 

horizon at a small amplitude of temperature fluctuations, 1kze−  . 

To the leading order, equation (27) for 1j =  yields 

 

 

~ ~

,1 ,1

1 10 10

1
1 ,

2

sX X
J D d D

z z








 







−

  
= − − − 

  
  (38) 

 

where ( )0 0j jD D T= . Equations (23), (24) yield 

 

 ( )~

12 ,1 10 10 12 20 20 1

~ ~

,1 ,20 .sK X bY z Y a K Y YX X = − + −  (39) 

 

Since
1 0J = for a stable distribution of the dissolved substance, one can get from equations (38) and (39) 
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,1 ,2 ,112 0 10

10 10 20 20 1

~

0

12

~ ~

12

0 sin 1 .
d d dka Y

D bY K Y Y
dz d

X X

zK Kz d

X

 

 




   


     
= − + − + + −            





 (40) 

 

Simplifying the latter equation and performing similar calculations for substance 2 yield 

 

 
,1 ,2 ,11

1

~ ~

2 0
10 1

~

0 20 2sin 0,
d d dka

Y
X

b K K
d

K
z dz dz

X X


 

   


  
− − + + =   

 



  

 (41) 

 
,1 ,2 ,21

1

~ ~

2 0
20 1

~

0 20 2sin 0.
d d dka

Y
X

b K K
d

K
z dz dz

X X


 

   


  
− − + + =   

 



  

 (42) 

 

 

5.1.1. Single-component gas 

 

In the case of a single-component gas ( 20 0Y =  and ~

,2 0X = ), system (41), (42) can be simplified to 

 

 ( )1 0 1

,1

0

~

sin 0,
d

b ka K
dz

X
    


+ + − =  (43) 

 

and equation (25) for   turns into  

 

 ~

10 ,1 1 0 cos .K X bz a  = −  (44) 

 

Applying relation (44), one can recast equation (43) in terms of  ; 

 

 ( )1 0 1 0sin sin 0.
d

b ka a
dz


     

  +  + −  =   

 

Let us introduce new dimensionless variables 12 0

12 0

,
kabz

a b



= =


 (in this case 12 1a a= ). The 

dimensionless equation for   reads 

 

 ( )sin sin 0.
d

d


    




  + + − =  (45) 

 

The characteristic values of the dimensionless coordinate   are of the order of 1, so the assumption 

1kz =  requires 1 . Therefore, the second term in equation (44) can be neglected. Thus, 

 

 ( )sin 0,
d

d


   




 + − =  (46) 

 

which is identical to equation (19) in [6] and can be integrated with the initial value ( 0)   = = ; 

 

 ( )cos sin .      − + =  (47) 

 

Equation (47) provides an implicit dependence of   on the coordinate  . The field ( )   decreases 

monotonically with depth   from ( )0  =  to ( )1 0 = . The penetration depth of the bubble horizon is 

1b = . With a known field ( )( )1 0bz a  , one can use equation (44) to find ( )~

,1X z . 
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Below the penetration depth of the bubble horizon 1b = , the solute concentration is spatially uniform and 

constant in time. To the leading order, 

 

 ( )
20

~

,1 0
0.

Y
X =

 =  (48) 

 

5.1.2. Two-component gas 

 

As was shown for a single-component gas, the consistency of the approximation 1kz  assumes that the 

term 12 0 sinka   in equations (41) and (42) is neglected. The sum of products of equation (23) by 10K  and 

equation (24) by 20K  yields 

 

 0,
dZ dZ

b
dz dz




  

− + = 
 

 (49) 

 

where 

 

 
10 ,1 20 ,2

~ ~ .Z KX XK  = +  (50) 

 

Equation (25) in terms of Z  reads 

 

 12 0 cos .Z bz a = −   (51) 

 

Substituting Z  from equation (51) into equation (49), one obtain an equation identical to (46) in terms of 

( ) 
. However, it should be integrated with boundary conditions that take into account the diffusion 

boundary layer (37); 

 

 2 10 1 0 1 20 2 0
12

2 10 10 1 20 20

.(0)
D Y a DY a

Z
D K Y D K Y

K
 + 

=
+

 

 

In this case, ( )0  does not equal to   as in the case of a single-component gas. However, according to 

equation (51), 

 

 ( ) 10 10 20 20 2 10 1 1 20 2

10 1 20 2 2 10 10 1 20 20

cos 0 .
Y K Y K D Y a DY a

Y a Y a D K Y D K Y


+ +
= −

+ +
 (52) 

 

Then, instead of equation (47), one obtains 

 

 ( ) ( )cos sin 1 ,b        − + = + −  (53) 

 

where the penetration depth of the bubble horizon  

 

 
( ) ( ) ( )0 cos 0 sin 0

1b

   




   −  + 
= − .  

 

is decreased compared to the case of a single-component gas.  

The difference between the products of equation (23) by 20Y  and equation (24) by 10Y  is  

 

 ,

~ 0,res
d

X
d

z
 =   
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where 
,

~

resX
 is determined from equation (36). Taking into account the boundary condition (37) yields 

,

~ 0resX = . 

The distribution of components can be calculated from the expressions for Z  and ~

,resX
; 

 

 ( )10 20 , 10
,1 12

~

1

0

~

2 12

cos ,
resX

X
K

a
K

Y Z K Y
bz 



 

+
= = −   (54) 

 ( )20 10 , 20
,2 12 0

12 12

~

~ cos .
resX

X
K

a
K

Y Z K Y
bz 



 

−
= = −   (55) 

 

Below the penetration depth of the bubble horizon b  (where 0 = ) the concentration of the solution is 

spatially homogeneous and constant in time. To the leading order, 

 

 
,

~

,1 2

~ 0X X   = = ,  

 

which means that the composition of the solution does not change compared to the case of no temperature 

oscillation. 

To summarize this section, we note that in terms of   the case of a two-component atmosphere is similar 

to the case of a single-component atmosphere with the effective parameter 12a  instead of ja  and 12K  instead 

of 0jK . However, the diffusion boundary layer noticeably reduces the uppermost part of the bubble horizon. 

Indeed, for a single-component gas ( )0  = , and for a two-component gas ( )0
 is determined from 

equation (52), i.e., the profile for a two-component atmosphere is the profile for a one-component atmosphere 

shifted towards the surface. 

It is important to note that the developed analytical theory is an approximation, not a strict limiting case. 

The analytic theory requires smallness of 0 . Meanwhile, at small values of 0 , the penetration depth of the 

bubble zone is small (one can see from the definition of   that the penetration depth is a linear function of 0

) and can become comparable with the thickness of the diffusion boundary layer: 

 

 122diff D = .  

In this case, the approximation of “frozen” profiles ( ), jX z  is not applicable. Thus, the “frozen” profile 

approximation is not compatible with the limit 0 0 → . Nevertheless, for moderately small 0 , both 

approximations can be quite accurate. 

 

5.2. Moderate penetration depth of bubble horizon 

 

The theory formulated for the case of a shallow penetration depth of the bubble layer makes it possible to 

obtain an analytical solution, which significantly improves the understanding of the system dynamics, and to 

evaluate its characteristic feature such as the relationship between the penetration depth and the amplitude of 

temperature oscillation 0 . Taking the theoretical description of this medium as a basis, we can proceed to 

the problem constructing a theory for a moderate penetration depth, when kz  (or  ) is not small in the bubble 

zone. 

In this case, the calculation of the average diffusion fluxes (27) requires taking into account the dependence 

of diffusion coefficients on the temperature; 

 

 ( ) ( )( )( )2

0 1 .j j j jD T D  = + +   (56) 

 

After time-consuming but obvious calculations, one can get an improved version of the system of 

equations (41), (42); 
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( ) ~

1 0 ,

10 0

sinkz

j

j

J

e dX
Y b K

dz

  



−

  
+   

− +


 




     

 

~2
,221 012

0 12

1
+ sin sin 2 0,

2 2

kz kz
dXa

e e
d

K
k

z


  



− −

  

 
 
 

 
 + − + = 
 

 (57) 

 
( )2

~
0 ,

20 0

sinkz

j

j

J

e dX
Y b K

dz

  



−

  
+   

− +


 




     

 

~2
,22012

0 1
2

2

1
+ . sin sin 2 0

2 2

kz kz K
dXka

e e
dz


  



− −

  

 




 
 + − + =


 
 

 

(58) 

 

The sum of equation (57) multiplied by 10K , and equation (58) multiplied by 20K , is equal to 

 

 
( ) 2

12 0 212 012
0

sin 1
sin sin 2 0,

2 2

kz

kz kz
e kadZ dZ

b e e
dz dz

   
  

 

−

  − −

  

+    
− +  +


− + = 

 


 


 



 (59) 

 

where 

 1 10 10 2 20 20
12

10 10 20 20

.
Y K Y K

Y K Y K

 


+
=

+
 (60) 

 

Equation (25) for   yields 

 

 12 0 cos .kzZ bz a e −

= −   (61) 

 

Substituting equation (61) into equation (59), one can rewrite the latter one in a dimensionless form for 

cosF e  −

=  (also bearing in mind that 12 0Z bz a F= −  ): 

 

 
( )

( )

2 2

12 0

2 2 2

12 0 12 0

arccos
.

1 1
arccos 1

2 2

Fe e Fd

dF
e Fe F e F

 

  

 

  

−

− −

− −  −
=

 
+  + −  − 

 

 (62) 

 

Equation (62) can be integrated from the initial conditions ( )( )cos 0 0F = =  (on the surface) to the point 

where the F e −=  (at the bottom of the bubble horizon); ( )cos 0
 is determined from equation (52). Here we 

intentionally integrate ( )d dF  instead of ( )dF d , since this allows taking into account the singularities 

dF d =   on the surface. 

Now one can calculate the quantitative indicators of the solution composition. As in the case of shallow 

penetration, subtracting Eq. (58) multiplied by 10Y  from Eq. (57) multiplied by 20Y  yields the differential equation 

for ~ ~ ~

, 20 ,1 10 ,2resX Y X Y X  = − : 

 

 ( ) ( )~ 2 210 20
, 1 2 12 0

1
sin cos sin 2 .

2 2

kz kz kz

res

Y Yd d k
X a e e e

dz dz
     



− − −

    −
 

=  
 

−  − − 
  

  

 

The latter equation can be recast to a dimensionless form, which is convenient for integration together with 

Eq. (62): 

 

 ( ) ( )( )~ 2 2 2 2 2 210 20
, 1 2 12 0 arccos .

2
res

Y Y
dX a e F dF e e F F e F d     



− − −



 
= −  − − − − − 

 

 

(63) 
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The value of ~

,resX
 on the surface is determined according to the boundary condition (37): 

 

 ~

, 0
0,res z

X =
=  (64) 

 

which serves as the initial condition for integrating Eq. (63). For given Z  and ~

,resX
, one can get 

 

 

~

10 20 ,~

,1

12

,
resY Z K

K

X
X





+
=  (65) 

 

~

20 10 ,~

,2

12

.
resY Z K

K

X
X





−
=  (66) 

 

Note that the value of ~

,resX
 (equations (63), (64)) has a higher order of smallness in 0  than Z . Thus, it 

is small for small fluctuations in solubility. Moreover, it is also proportional to the difference in the temperature 

dependence of the diffusion coefficients ( )1 2 − . If 1 2 = , discrepancies in 0jD  or in the solubility 

properties of the first and second components cannot lead to a change of ~

,resX
 within the bubble layer. Thus, 

the composition of the solution under the bubbly horizon in leading order by 0  is as follow: 

 

 ~ ~

,1 ,2 0.X X       

 

This means that the composition of the solution does not change compared to the case without temperature 

oscillations. 

 

6. Conclusion 

 

The effect of harmonic surface temperature oscillations on the infiltration of a weakly soluble substance in 

a liquid-saturated porous medium is considered. These oscillations create a temperature wave that propagates 

in the porous medium from the surface deep inside and attenuates. The solubility wave associated with the 

temperature wave leads to a time-dependent alternation of zones of the undissolved phase with the saturated 

solution and the zones of an undersaturated solution. Due to the smallness of the ratio D   ( 3~ 10−  for typical 

liquids), diffusion transfer in a porous medium occurs much slower than the temperature (and solubility) 

changes. As a result, the profile of the net mole fraction of guest molecules in the pores X  (“net” means 

“solute + undissolved phase”) remains almost constant throughout the oscillation period. For gases, the profile 

almost reaches its maximum solubility for the period near the surface and monotonically decays with depth in 

the zone where the undissolved phase can be observed (the so-called “bubble horizon”) and remains at a 

constant level below the bubble horizon. At any depth z , the bubble phase disappears only for a short part of 

the oscillation period; in the limiting case ( 0D  → ), this part of the oscillation period also tends to zero.  

The appearance of a near-surface diffusion boundary layer for the case of multicomponent gases is of 

interest in the described system. This boundary layer does not arise for single-component guest substances, 

since in the specified thin near-surface zone the concentration profile is the solubility one, which is 

unambiguously dictated by the temperature field. For single-component guest substances, this boundary layer 

never appears, since in this thin near-surface zone the concentration profile is the solubility one, which is 

dictated by the temperature field. For multicomponent gases, the total solubility depends on the relative 

proportions of the components. If the components diffuse at different rates, the nonstationarity of the 

concentration on the surface creates an unequal redistribution of the components in the solution and the bubble 

phase. This oscillating nonstationarity causes the nonstationarity of solubility. Since the mechanism of 

transport of component molecules is diffusion, the spatial scale of penetration of these solubility fluctuations 

is determined by the diffusion coefficient. It is appropriate to call the zone of such unsteady behavior the 

diffusion boundary layer. In the paper it is shown that beyond its limits it is possible to set effective boundary 

conditions for the gas mixture composition (see equation (37)) , and the transport of gases can be considered 
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as corresponding to the transport of a single-component gas with effective solubility parameters and its 

temperature dependence (33) and (30).  

Previously, a strong nonlinear effect of freezing waves arising from temperature fluctuations was 

established and theoretically studied if the minimum temperatures fall below the freezing point of the liquid 

[24]. In porous media with active methane released from sediments, freezing waves can lead to the formation 

of bubble horizons. In the case of passive media considered in this work (without a source of matter distributed 

over the volume), the transfer of multicomponent gases should involve a nontrivial interaction between the 

diffusion boundary layer and freezing waves. 

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (theme 

no. 121112200078-7). 
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