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There are two traditionally discussed dispersion relations (DR) in condensed media: gapless phonon 

DR and DR with an energy or frequency gap. In various fields of condensed matter physics, the third type 

of DR is of interest, which correspond to gap effects in k -space (Gapped Momentum States – GMS). The 

growing interest in GMS is associated with important consequences for the dynamic and thermodynamic 

properties of the system (hydrodynamic turbulence, plasticity, fracture). Traditionally, GMS arise in the 

Maxwell–Frenkel approach as applied to the viscoelastic properties of liquids and solids, when the DR-

gaps can continuously vary from energy to momentum space. This work is the first in a series of studies 

devoted to the analysis of dispersion effects associated with the anharmonicity of the potential and the 

emergence of collective breather-type modes, the so-called discrete breathers (DBs), and their influence on 

the macroscopic properties of nonlinear lattices, for example, on heat conductivity. Recently, the influence 

of discrete breathers (DBs) on the macroscopic properties of nonlinear lattices, for example, on thermal 

conductivity has been investigated. When solving this problem, it is important to know how phonons 

interact with DBs. The scattering of phonon wave packets of small amplitude by standing DBs in the  -

Fermi-Pasta-Ulam-Tsingou (  -FPUT) chain is studied numerically for different amplitudes of DBs. It is 

found that DBs of sufficiently large amplitudes reflect short-wavelength phonons, but remain transparent 

for long-wavelength phonons. An increase in the DB amplitude expands the reflection region in the short-

wavelength part of the first Brillouin zone. These results suggest that DBs in the  -FPUT chain do not 

strongly affect the thermal conductivity, since heat is transferred mainly by long-wavelength phonons, 

which are weakly affected by DBs. 
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1. Introduction 

 

Discrete breathers (DBs) are spatially localized vibrational modes of large amplitude in defect-

free nonlinear lattices; they were discovered by mathematicians over three decades ago [1–3]. 

Extensive studies on DBs are summarised in two reviews [4, 5]. DBs have been experimentally found 

in arrays of superconducing Josephson junctions [6, 7], in artificial discrete nonlinear systems [8–

15], electrical lattices [16, 17], and in crystal lattices [18–25]. 

The experimental observation of discrete breathers in crystals is not an easy task [18–25], and 

numerical methods are often used to study them [26–37]. A close relation between DBs and 

delocalized nonlinear vibrational modes has been demonstrated in [38– 40]. The ultimate goal of 

studying DBs in crystals [41] is to evaluate their effect on macroscopic properties. It has been 

demonstrated experimentally in [19, 20] that the presence of DBs affects the heat capacity and thermal 

expansion of  -uranium. For nonlinear chains the effect of DBs on thermal conductivity [42,43], 

specific heat [44], thermal expansion and elastic constants was also analyzed in [45]. 

 When studying the effect of DBs on thermal conductivity, it is important to know how phonons 

are scattered by DBs. It was shown in [42] that with increasing temperature, a transition from ballistic 

[46] to normal thermal conductivity is observed, and this transition was explained by the excitation 

of DBs at high temperatures, which effectively scatter phonons and reduce the thermal conductivity. 
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The aim of the present work is to analyze the interaction of phonons with DBs in the classical  -

Fermi–Pasta–Ulam–Tsingou (  -FPUT) chain [47]. The symmetric anharmonicity, considered in the 

formulation, makes it possible to avoid the effect of thermal expansion due to the relationship between 

mechanical and thermal oscillations [48, 49]. 

The main goal of the work is to study how DBs of different amplitudes affect the propagation of 

small-amplitude phonons in the  -FPUT chain. The problem of phonon-DB interaction has been 

considered in [50, 51] and in recent works [52, 53]. 

DBs can be classified according to the type of anharmonicity: for a soft (hard) type anharmonicity, 

the DB frequency decreases (increases) with increasing amplitude. 

For a chain with a tunable type of anharmonicity, it was shown that in the case of hard-type 

anharmonicity, DBs are transparent for long-wavelength phonons and reflect short-wavelength 

phonons, while for the soft-type anharmonicity the opposite effect is observed [53]. In that work, a 

chain with harmonic coupling and an anharmonic on-site potential was considered. It is interesting to 

see what happens in the chain without on-site potential, for example, in the  -FPUT chain. In a chain 

without an on-site potential, the phonon spectrum has no gap and, therefore, only DBs with hard type 

anharmonicity can exist, since their frequency must be higher than the phonon spectrum. DBs in the 

FPUT model have been analyzed in [54]. 

The article presents the mathematical  -FPUT model and simulation setup, discusses the 

properties of DBs in the  -FPUT chain, , studies the interaction of phonons with DBs, and analizes 

the results. 

 

2. The model and simulation setup 

 

The dynamics of the β-FPUT chain of particles [47] having mass m  is defined by the Hamiltonian 

 

 n n

n n

H K P K P= + = +  , (1) 

 

where K  and P  are the kinetic and potential energies of the chain, respectively. The kinetic, potential 

and total energies of particles are 

 

 
2
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k k
P u u u u u u u u

 
− − + += − + − + − + − , (3) 

 
n n nH K P= + , (4) 

 

respectively. Here, the unknown function of time t , ( )nu t , is the displacement of the n -th particle 

from its lattice position, and n nu du dt  is its velocity. Each particle interacts with its nearest 

neighbors through a potential that includes harmonic and anharmonic terms with coefficients k  and 

 , respectively. Using the Hamilton’s principle, the following equations of motion can be obtained 

from (1)–(3): 

 

 ( ) ( ) ( )
3 3

1 1 1 12n n n n n n n nmu k u u u u u u u − + − += − + − − + − . (5) 

 

Without loss of generality, we set 1h =  for the lattice spacing, 1m = , 1k = . We also set and 

investigate the interaction of small-amplitude phonons with DBs of different amplitudes. 
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A chain of 122 2048N = =  particles with absorbing boundary conditions is considered, so that any 

radiation from a DB does not affect its dynamics. Small-amplitude phonons, 

( )~ exp 2n qu i qn N t  −
 

 with wave number 0, 1, ..., 2q N=  and frequency
q

 , obey the 

dispersion relation: 

 

 2 sinq

k q

m N


 = , (6) 

 

which can be obtained by substituting the phonon solution into the linearized (5) with 0 = .  

Note that the maximal phonon frequency is max 2q = , which corresponds to 2q N= . The phonon 

group velocity is 

 

 
2

cos
q

g

d k q

dq N m N

  
 = = . (7) 

 

The equations of motion (5) are solved numerically with the help of the symplectic, sixth-order 

Störmer's method [55] with the time step 310 m k −= . The total energy of the chain in our 

simulations is conserved with the relative error not exceeding 10−7. 

 

3. Properties of discrete breathers 

 

 For the DBs solution, the following ansatz is used  

 

 
( )

( )

( )

( )

1
0 ,

ch

0 0,

n

n

n

A
u

nh x

u



−
=

−  

=

 (8) 

 

where A  defines DB amplitude,   is the inverse width (degree of localization) of DB, and x  is the position 

of DB. If x lh= , where l  is an integer, then DB is localized on a particle (on-site DB). For ( )0,5x l h= +  

the DB is localized in the middle of a bond (inter-site DB). 

For the chosen parameters A  and x  of the ansatz (8), the inverse width of DB is found so that the 

DB oscillation amplitude 
DBА  is constant in time. 

 

An example of fitting the parameter is presented in Fig. 1 for the on-site DB placed in the middle 

of the chain ( 2 1024x N= = ) and 0,5А = . In Fig. 1a, the displacement of the DB’s central particle 

а 

b 

Fig. 1. The displacement of the central particle as 

the function of time for the on-site DB initiated by 

the ansatz (8) with ,  and The red dots 

mark the maximum points of the curve, that is the 

DB amplitude  (b) The maximum points of the 

curve  for the five values of , from top to 

bottom: 0,75, 0,85, 0,95, 1,05, и 1,15 The value 

 = 0.95 is used in simulations because it produces 

a DB with minimal oscillation of the amplitude. 
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is shown as the function of time for 0,95 = . The red dots show the maximal values of ( )2Nu t , that 

is the DB amplitude. In Fig. 1b the DB amplitude is plotted as the function of time for different values 

of   from top to bottom: 0.75, 0.85, 0.95, 1.05, and 1.15. It can be seen that for 0.95 = , after a 

transient period of a few DB periods, the DB amplitude becomes time independent, 0.472DBА = . This 

value of   is used for excitation of the DB. It can be seen that even for the best choice of   the DB 

amplitude is smaller than A , because the ansatz (8) is not an exact breather solution. A part of the 

energy initially given to the chain is radiated in the form of small-amplitude wave packets moving 

away from the DB. The wave packets are absorbed at the boundaries and a standing DB remains in 

the middle of the chain radiating no energy. 

In Figs. 2 and 3 one can see properties of the on-site and inter-site DBs, respectively. As the 

functions of the ansatz parameter A  shown are: (a) DB amplitude 
DBА , DB inverse width   

(Fig. 2a, b (2)), frequency   (Fig. 2a, b (3)) and DB energy E  (см. Fig. 2a, b (4)). As mentioned 

above, 
DBА  is always smaller than A . The DB inverse width increases linearly with А  at small 

amplitudes and then the growth of   with А  slows down. The DB frequency bifurcates from the 

edge of the phonon spectrum (recall that the maximal phonon frequency is ( max 2q = ) and increases 

with А due to the hard type anharmonicity ( 0  ) of the considered chain. 

 

  

Fig. 2. The parameters of the on-site DB as the functions of the parameter
DB

А : of the ansatz (8): (a) DB 

amplitude, (b) inverse width, (c) frequency, and (d) energy. 

 

4. Phonon scattering on DB 

 

Let us proceed to the numerical analysis of the interaction of low-amplitude phonon wave packets 

with DBs. In doing so, we place a DB in the middle of a chain of 2048N =  particles by setting (

2x N= ) in (8) and excite a phonon wave packet moving to the right in the left half of the chain: 
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2
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n q
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

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= −   − 

 

= −  

 (9) 

 

where e , q  and q  are the phonon amplitude, wavenumber, and frequency, respectively. We set

10s =  in (9) to ensure that initially the phonon does not overlap with the DB. Phonons with different 

wavenumbers q are considered. Recall that the relation between q  and q  is established by (6). The 

phonon amplitude is chosen very small, 
43 10e −=  , in order to minimize the effect of the phonon on 

the discrete breather. 

According to the results reported by Flach and Gorbach [54], the on-site DB is unstable, and for 

this reason, the scattering of phonons is studied only on the inter-site DB. The phonon wavepacket 
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propagates towards the DB and is partly reflected and partly transmitted. The transmission coefficient 

is defined as follows: 

 

0t te E E= , (10) 

 

where
tE  is the phonon energy per particle transmitted through the DB and 2 2

0 2qE e =  is the 

incident phonon energy per particle. 

The transmission coefficient as the function of the normalized phonon wavenumer is plotted in 

Fig. 3 for different values of DB amplitude. It is seen that for 0.5DBА   the DB is practically 

transparent for all phonons in the first Brillouin zone, since 
te  is close to unity. With an increase in

ДБ
А , the transmission coefficient decreases, and the most noticeable decrease is observed for short-

wavelength phonons. For not very large 
DBА , a local minimum is observed for phonons with a longer 

wavelengths (smaller q ), and the position of the minimum shifts to the right with increasing 
DBА . 

This local minimum can be attributed to the resonance of the phonon wavelength with the DB width, 

which decreases with increase in 
DBА . 

 

The mean integral transmission coefficient, 

 

 

2

0

2
N

t tI dq
N

=  ,  (11) 

 

is plotted in Fig. 4 as the function of the DB amplitude by dots connected by the blue line. We note 

once again that, for 0.5DBА  , the DB has practically no effect on the phonon flux, since 
t

I  is close 

to unity. For 0.5DBА   the DBs start to noticeably reflect the short-wavelength phonons and 
t

I  starts 

to decrease with increasing 
DBА . 

Phonon energy density is 

 

2 21

2
qE e = . (12) 

 

 
Fig. 3. The transmission coefficient defined by (10) as the function of the normalized phonon 

wavenumber for different DB amplitudes
DBА  from 0.4 to 1.7, as indicated for each curve in the inset. 
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In thermal equilibrium, by definition, all phonon modes have equal energy density. A phonon 
carries energy with the group velocity defined by (7). All phonons moving in positive direction (

0q  ) carry energy 

 

2

0

0

2

N

g

k
W E dq E

m
 = . (13) 

 

If a DB is in the chain, only a part of the energy will pass through it, which can be calculated as 

 

 ( )
2

0

N

t t gW e q E dq=   (14) 

 

and this energy depends on the DB amplitude because ( )te q depends on it. 

We estimate tW  numerically taking ( )te q from Fig. 3 for various DB amplitudes and present the 

ratio 0tW W , in Fig. 4 by open symbols connected with the red line. This curve lies above the ( )DBtI А

, curve, since it characterizes the integral effect of DBs on energy transfer by phonons, taking into 

account the fact that short-wavelength phonons have a smaller group velocity; for instance, at 
1.7DBА =  one has 0.48tI =  and 0 0.59tW W = . 

 

5. Conclusions 

 

In the present study, the scattering of small-amplitude phonons by DBs was analyzed numerically 

in the  -Fermi–Pasta–Ulam–Tsingou (  -FPUT) chain with the hard type anharmonicity ( 0  ). 

As in the case of a hard type anharmonicity chain with an on-site potential, studied in [53], the DBs 

in the  -FPUT chain mainly reflect short-wavelength phonons, being practically transparent for 

long-wavelength phonons. This contrasts with the soft type anharmonicity chain with on-site 

potential, for which the opposite trend was observed [53]. 
The DB scatters short-wavelength phonons only if its amplitude is higher than the threshold value, 

in the chain under consideration scattering takes place at 0.5DBА  . This fact explains the relatively 

 
Fig. 4. 

t
I  (filled dots) and 0tW W  (open symbols) as the functions of DB amplitude. 

http://dx.doi.org/10.7242/1999-6691/2021.14.4.37


S.V. Dmitriev et al. Computational Continuum Mechanics. 2021. Vol. 14. No. 4. pp. 444-453 DOI: 10.7242/1999-6691/2021.14.4.37 

450 

sharp transition from ballistic to normal heat conductivity with increasing temperature in the 

nonlinear chain (see [42]). At low temperatures, only small-amplitude DBs are excited; they weakly 

interact with phonons and do not change the character of ballistic thermal conductivity. At sufficiently 

high temperature, large-amplitude DBs are excited, which change the thermal conductivity to normal 

characteristics, acting as defects scattering phonons. 
In the  -FPUT chain, the effect of the DBs on thermal conductivity should be relatively small, 

since DBs mainly scatter short-wavelength phonons, which have a low group velocity and, therefore, 

make an insignificant contribution to thermal conductivity. 
Our results confirm the conclusion that thermally populated DBs can reduce thermal conductivity 

at high temperatures due to phonons scattering [42]. In subsequent works, the case of not very small 

phonon amplitudes will be considered, when new interesting effects can be observed, such as 

emission of energy by a discrete breather, acceleration of a mobile DB by phonons, and others. It 

would also be interesting to consider if strong anharmonicities in this model could induce properties 

typical of liquids, such as linear in frequency vibrational density of states [56], and/or anomalous 

glassy properties, such as an anomaly in the Boson Peak at low energies [57]. 

The investigation of the effect of discrete breathers on the dynamics of nonlinear chains for the 

analysis of the bridge scattering of small-amplitude phonons on discrete breathers with rigid 

anharmonicity of Naimark O.B. (Conceptualization, Writing – original draft), Baggioli M. 

(Conceptualization, Discussion), Morkina A.Y. (Numerical simulation), Nikitiuk A.S. (Numerical 

simulation) was financially supported by the Government of Perm Krai, project No. C-26/562. 

Baggioli Matteo (Conceptualization, Discussion) is grateful for the support of Shanghai Municipal 

Science and Technology, grant No. 2019SHZDZX01. Part of the work by Dmitriev S.V. (Design, 

Writing – original draft), Korznikova E.A. and Morkina A.Y. Numerical simulation was done under 

support from the Russian Science Foundation (project No. 21-12-00229). 
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