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 Components and structural elements used in modern technology are often exposed to significant loads 

in a wide range of temperature and deformation rates, and are subjected to complex loading. As a result, all 

these factors put forward increased requirements for the properties of materials when designing structures 

of different sizes - from miniature to large-scale. A significant part of the structures used in various 

industries is made of polycrystalline metals and alloys. The physical and mechanical properties of 

polycrystalline aggregates in finished products depend on their phase and component composition, meso- 

and microstructure, including the orientation of crystallites (grains, subgrains), symmetry properties of the 

latter, and on the initial (residual) stresses that occur during their manufacturing. Since experimenting with 

full-scale structures requires considerable material and time expenditures, mathematical modeling 

approaches are applied for designing structures and their manufacturing processes. Mathematical modeling 

provides an opportunity to describe processes in any materials with varying degrees of accuracy. 

Constitutive relations (or constitutive models) are the most important element of the mathematical models 

developed for solving these problems. Currently, the most promising among these models are multilevel 

models based on the introduction of internal variables and crystal plasticity. When analyzing the elastic-

plastic deformation of various products, the isotropic constitutive relations are often used to simplify the 

analysis of the elastic component of deformations. This work is devoted to the study of errors arising when 

the anisotropic elastic properties of crystallites are replaced by the corresponding isotropic properties of the 

materials with BCC, FCC and HCP lattices for different laws of orientation distribution of crystallites in a 

polycrystalline aggregate in a reference configuration. Using a two-level model based on the physical 

theory of elastoviscoplasticity, a series of numerical experiments on simple shear loading, sequences of two 

simple loads, and cyclic deformation was performed to analyze the evolution of the stress-strain state and 

to estimate the residual stresses in crystallites. 

Key words: two-level physical elastic-viscoplastic model, equivalent isotropic material, residual 

mesoscopic stresses, crystallographic texture  

 

1. Introduction  

 

Despite the increasing use of composite materials in various branches of industry, metals and 

alloys remain among the main structural materials. The development of technological regimes for 

processing alloys in recent decades is based on mathematical modeling of inelastic deformation 

processes in a wide range of thermomechanical effects. At the same time, most models focused on 

solving practical engineering problems are based on the macrophenomenological theories of 

plasticity, elastoviscoplasticity, and creep [1–6]. However, these theories were elaborated using the 

results of macroexperiments (mainly, uniaxial loading tests), and therefore they do not explicitly 

describe the physical mechanisms responsible for structural changes in materials at various structural-

scale levels. At present, there is a large amount of experimental data and theoretical studies which 

provide evidence that the processes of inelastic deformation and the properties of polyscrystalline 

materials at the macrolevel are determined primarily by the state of the evolving meso- and 

microstructure of the material. Therefore, multilevel models with substantial universality based on 

the introduction of internal variables and physical theories of inelasticity (elastic plasticity, 

elastoviscoplasticity) have gained wide recognition [7-11]. 

In the last 15-20 years, in order to improve the physical and mechanical properties of products 

made of metal and alloys, the use of processing by means of severe plastic deformation (SPD) has 

become relevant in industry and mechanical metallurgy engineering, which makes it possible to 

obtain materials with unique properties: submicrocrystalline, nanocrystalline, textured materials, 
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materials capable of undergoing superplastic deformation, etc. Numerous studies have shown that the 

products deformed through SPD have improved performance properties, the acquisition of which is 

a consequence of significant changes in the meso- and microstructure of the material, such as grain 

shaping, crushing and fragmentation, rotation of the crystalographic lattices of subgrains and 

fragments, and dislocation substructure evolution.  

To improve existing technologies and develop new SPD ones, in order to obtain materials and 

products with improved performance characteristics, it is necessary to construct constitutive models 

for describing the evolution of the structure during deformation, taking into account the effect of the 

changes in the structure on the process parameters and the effective properties of the material at the 

macroscale level. Multilevel models with internal parameters mentioned above become popular 

because they fully meet these requirements and can be used to create advanced functional materials 

[11]. 

Multilevel models are subdivided by the number of considered levels, the type of constitutive 

relations at the lower structural-scale level, and by the hypotheses about the relationship between the 

related parameters of different levels. There are three main groups of multilevel models: direct, self-

consistent, and statistical [11]. To date, the most commonly used models are statistical two-level 

(including meso- and macrolevels) elastic viscoplastic models originating in the works of Taylor [12] 

and Lin [13]. One of these statistical models will be used in this study. 

It should be noted that the study of SPD technologies requires the formulation and solution of 

boundary value problems, and the analysis of the geometric nonlinearity of boundary conditions, 

kinematic and constitutive relations (CR). One of the basic equations of the model is the elastic law, 

formulated in most cases in the rate relaxation form. In this case, the assumption about the isotropy 

of elastic properties is often accepted both at the macro- and mesolevels. A similar hypothesis can 

still be accepted at the macrolevel for polycrystalline metals using a uniform law of distribution of 

grain lattice orientations, but it is hardly acceptable at the mesolevel (the level of individual 

crystallites - grains, subgrains). In this regard, the question arises of estimating the errors caused by 

the assumption of the anisotropy of elastic properties both at the level of a representative 

macrovolume and at the level of crystallites. 

It should be mentioned that, when describing plastic deformation in physical theories of 

elastoviscoplasticity, the anisotropy of crystallites is naturally considered. Previously, the authors 

analyzed the correspondence between stress-strain states (SSS) (including residual stresses in a 

representative macrovolume exposed to complete unloading) that comply with the anisotropic and 

equivalent isotropic elastic characteristics obtained under simple loading conditions. It was assumed 

that polycrystalline samples have three different types of lattices with an initial uniform distribution 

of lattice orientations [14]. This paper presents the results of studies for arbitrary complex loading of 

polycrystalline samples with different laws of distribution of crystallite orientations in the reference 

configuration. 

 

2. Mathematical formulation 

 

In this study, the problem of SSS determination is solved in terms of a two-level elastoviscoplastic 

model [11]. The representative macrovolume of a polycrystal acts as an element of the macrolevel, 

that is the minimum volume of a crystallite (grains, subgrains). An increase in the number of 

crystallites in this case will not cause any significant deviations in the analyzed parameters of this 

level, for example, the relations between stress intensity and accumulated plastic strain intensity. A 

crystallite (grain, subgrain) is considered as an element of the mesolevel. The main mechanism of 

deformation is the motion of boundary dislocations along slip systems known for each lattice type. 

Hardening on the slip systems and rotations of crystallite lattices under loading are also taken into 

account. 

One of the key questions related to the development of constitutive models able to describe the 

processes of deformation with high velocity gradients (analyzing geometric nonlinearity) is the 

decomposition of motion into quasi rigid and strain-induced motions, which should allow taking into 

account the symmetric properties of crystallites [15]. For this purpose, a moving non-deformable 
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orthogonal Cartesian coordinate system (MCS) 1 2 3Ox x x  with a basis i
k  that is rigidly connected with 

a crystallographic direction and a crystallographic plane containing this direction is introduced for 

each mesolevel element (crystallite) [16, 17]. In the framework of the coordinate system rigidly 

connected with the crystallite lattice, the elastic tensor components п  are assumed to be unchanged. 

An affine change in the configuration of each crystallite is determined by the mesoscale deformation 

gradient f  [18, 15]. The additional unloaded configuration found from the reference configuration 

by applying transformation producing no changes in the lattice orientation (reference configuration – 

plastic component p
f  of the deformation gradient, and actual configuration - transformation 1e−

f ) is 

used to study both elastic and inelastic deformations. Along with the classical multiplicative 

decomposition of the deformation gradient e p= f f f  [19, 20], the expansion proposed in [16, 17], is 

used as the main one: e p=  f f r f . Here, е
f  is the elastic component of the deformation gradient, 

0

i

i=r k k  is the proper orthogonal tensor which converts the reference basis 
0

ik  of the moving 

coordinate system into the current basis, e
f  is the deformation gradient which transforms the 

plastically deformed configuration (subjected to rotation) into the actual configuration at the 

mesolevel, i.e., e
f  indicates the crystal lattice distortion. Based on this decomposition, the quasi-rigid 

crystal motion is described by the rotation tensor r , which simultaneously defines the rotation of the 

rigid MCS. 

The mathematical formulation of macro- and mesolevel submodels is given below (macroscale 

parameters are denoted by capital letters, and similar mesolevel parameters - by similar lowercase 

letters). The systems of equations take the form  

- for macrolevel 
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Here, K  (κ ) is the weighted Kirchhoff stress tensor at the macrolevel (mesolevel); 
cor = −  + K K Ω K K Ω  ( cor = +  − κ κ κ ω ω κ ) is the corotational rate of change of the weighted 

Kirchhoff stress tensor at the macrolevel (mesolevel), which is independent of choice of a reference 

frame; Ω  (ω ) is the moving coordinate system spin tensor at the macrolevel (mesolevel); П  (п ) is 

the elastic tensor; inZ  ( in
z ) is the inelastic component of the indifferent strain rate measure at the 

macrolevel (mesolevel) 
Tˆ= V –Z Ω  (

Tˆ –= z v ω ); 
Tˆ= l v  is the transposed velocity gradient (by 

the Voigt’s hypothesis 
Tˆ= = l L V , L  — transposed velocity gradient at the macrolevel); ( )k

  is the 

shear rate on the k -th slip system; 
0  is the shear rate on the slip system when the tangential stress 

approaches the critical shear stress; 
( )k

  and 
( )
c

k
  are the resolved and critical stresses on the k -th slip 

system; 
( )
sc0

l
  is the initial critical stress on the l -the slip system; 

sat  is the saturation stress; m  is the 

strain rate sensitivity exponent of the material; ( )   is the Heaviside function; ( )kb , ( )k
n  are the unit 

vectors of the slip direction and the normal to the k -th slip plane in the actual configuration; r is the 

tensor of rotation of the MCS at the mesolevel;   denotes the macro-volume averaging operator, a  

shows the deviations of the tensor characteristic a  for the crystallite from the value averaged by the 

representative macrovolume. 

Let us consider an algorithm that makes it possible to implement the formulated two-level model 

for describing the deformation of the macrolevel representative volume of an elastic-plastic body 

(Fig.1). Loading is performed kinematically, ( )tF  is a continuous and continuously differentiable 

function. Due to the significant nonlinearity of the problem of studying deformation processes, a step-

by-step time procedure is used for the solution, according to which the entire loading time interval is 

represented by a set of small-time steps. The main purpose of the calculations performed is to find, 

according to the prescribed law of deformation ( )tF  at each time step, the components of the stress 

tensors at the macro- ( )tΚ  and meso- ( )tκ  levels, as well as to determine the residual stresses in the 

crystallites. 

 
Fig.1. Scheme of the algorithm for a two-level elastic-viscoplastic model of the deformation process: 

arrows show the direction of transfer of parameters between the calculation procedures of different 

levels.  
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In the reference configuration, parameters of the following two groups are specified: 

- model parameters (the number of crystallites in a representative macrovolume, the law of 

distribution of crystallite orientation, the law of change of the transposed place gradient); 

- material parameters (the number of slip systems in a crystallite, initial critical stresses, 

hardening law, Burgers vectors and normal to the slip plane, elastic tensor components in a 

reference configuration that coincides with a crystallographic coordinate system (in the MCS 

basis) or equivalent isotropic elastic moduli). 

It is assumed that the material in the reference configuration has a natural state, and the crystallite 

lattices are oriented in accordance with the prescribed distribution law: 

 
( ) ( ) ( ) ( )с с0 00 00 0

,  τ τ ,  0 1,..., ,  
k k k

t tt t
k K

= == =
= = = = =κ 0 r r . 

 

At each time step (at its beginning), all calculation parameters (actual and critical stresses, 

accumulated shifts, lattice orientations, etc.) are assumed to be known from the previous step. Let us 

note the solution at the first step, which should be implemented with a relatively small time step. This 

is attributed to the fact that in the initial configuration the material is in its natural state; the stress 

tensors for each crystallite are thus equal to the zero tensor. Therefore, no stress relaxation can occur 

in this case under inelastic deformation. In this case, too large time steps can lead to very high stresses, 

and as a result, can even cause the oscillation of the solution. Subsequent loading steps are 

implemented in the elastoplastic region, where stress relaxation occurs due to inelastic deformations. 

The step-by-step algorithm that describes the loading of a representative macrovolume includes 

sequential fulfillment of the following points: 

Step1: mesolevel (for each crystallite): 

а Calculation in rates: 

 i. components of the velocity gradient tensor l are defined in the MCS basis;  

 ii. plastic component of the strain rate measure is determined; 

1. tangential stresses on each slip system are calculated; 

2. shear rates are determined for each slip system; 

iii. changes in the critical tangential stresses are evaluated;  

iv. spin tensor and plastic component of the strain rate tensor are calculated;  

 v. stress tensor derivative is determined using Hooke’s law in the rate relaxation form. 

 

b Integration (determination of unknown variables corresponding to the completed current step): 

  i. calculation of accumulated shear on each slip system. 

 ii. calculation of critical stresses;  

iii. determination of MCS rotation step increments; 

iv. calculation of a stress tensor at the mesolevel. 

Step II: macrolevel 

а spin and elastic tensor components and strain measure plastic component are calculated in the 

laboratory coordinate system (LCS) basis for each crystallite and then averaged; macrolevel spin 

tensors and elastic tensors are determined;  

b stress tensor derivative at the macrolevel is calculated using Hooke’s law in the rate relaxation 

form. 

c stress tensor at the macrolevel is established. 

The efficiency of the developed algorithm and program for its implementation has been verified 

by the results obtained during a simple shear test on a titanium sample. A brief review of recent full-

scale studies on the deformation of titanium single crystals was carried out to search for the data 

necessary in computational experiments. In a number of publications for various loading of titanium 

crystallites data are given that could be acceptable for identifying multilevel models. In [21], the 

quasi-static loading of a sample made of alpha- and beta-titanium (the β phase interlayer is in the 

middle of the sample) was considered. Dynamic compression of titanium single crystals was 

discussed in [22]. In [21, 23, 24], the compression of a titanium single crystal in a structure consisting 
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of titanium base samples, a substrate, and a loading setup was studied. Individual characteristics of 

the considered samples are not given. 

The accuracy of the numerical results obtained using the proposed algorithm was tested when 

comparing with the results of the simple shear test described in [25] (Fig.2). The independent elastic 

tensor components (constant in the MCS basis), in terms of which the remaining components are 

expressed, are as follows 

 

11п 162,4= GPа,     
33п 180,7= GPа,    

12п 92= GPа,    
13п 69=  GPа,    

55п 46,7= GPа, 

 

where the symmetric 4th rank tensor is written in matrix form (followed by the Voigt notation). The 

initial critical stresses used in our calculations are 150 МPa for basis slip type, 30 МPa for prismatic 

slip type, and 120 МPа for pyramidal c a+ slip type [26]. Other parameters are as follows: 

0 0,0001 = s–1; 
0 0,001tw = s–1 is the twin shear rate at the tangential stress that equals the critical 

stress; 50m =  [26]. Kinematic loading parameters are defined by the deformation gradient: 

( ) ( ) 2 3 2 3t t t = = − = −f F E p p E p p , where ε 0,0017=  s–1, 
ip  is the laboratory coordinate system 

basis [25]. The step-by-step implementation procedure was realized at the time step 0,0001t = s 

corresponding to the strain increment 0,0001 = .  

The step size in this example, and those considered below, was determined from preliminary 

numerical experiments and chosen according to the condition of an insignificant difference in the 

results of calculations at two adjacent time steps. It should be noted that, from now on, due to the 

small integration steps, the graphs plotted by points are represented by continuous lines. The sample 

used in this experiment was a single crystal with the MCS orientation that coincides with the LCS 

orientation; the results of the calculations are given in Fig.2.  

 

   

Fig.2. The dependence of stress intensity on accumulated strain intensity for the crystallite with anisotropic 

properties: calculations performed using the proposed model (1), (2) (a), results from [25] (b). 

 

 3. Input data for computational experiments 

 

The elastic properties of materials are determined by the elastic fourth rank tensor. A transition 

from tensor to the matrix form is carried out using the Voigt notation; a correspondence between the 

first and second pairs of indices of the fourth rank tensor components and the elastic matrix 

components (dimension 9 × 9) is illustrated by the relations: 

 

а б 
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11 1;    22 2;    33 3;

23 4;    31 5;    12 6;

32 7;    13 8;    21 9.

→ → →

→ → →

→ → →

 

 

The independent nonzero components of the elastic tensor (according to the Voigt’s notion) in the 

MCS basis for single crystals (mesolevel elements) of alpha iron (bcc lattice) [27], copper (fcc lattice) 

[16, 28], titanium (hcp lattice) [26] are equal: 

 

BCC:     
11п 200= hPa,     

12п 137= hPа,     
66п 116= hPа; 

BCC:     
11п 168,4= hPа,    

12п 121,4= hPa,    
44п 75,4= hPa; 

HCP:     
11п 162,4= hPа,    

33п 180,7ГПа= hPа,    
12п 92= hPa,    

13п 69= hPа,    
55п 46,7= hPа. 

 

Using the components of the tensor describing the elastic properties of crystallites and under the 

assumption of a uniform distribution of crystallite orientations, the elastic moduli of isotropic 

continuums are calculated by the Voigt-Reuss-Hill averaging [28–33]. The obtained results are given 

in Table 1. It should be recalled that the description of inelastic deformations at the mesolevel is based 

on the consideration of the crystal structure of the elements of this level, and in this connection, the 

terms “crystallite”, “mesolevel element orientation”, even under the assumption of isotropic elastic 

properties, make sense.  

Table 1. Model parameters and calculated values of the elastic moduli for isotropic materials.  

Material, lattice, 

parameters 

Averaging 

technique 
K , hPa  , hPa  , hPa 

alpha iron, bcc 
5

0 10 −= s–1; 83,3m = ; 1,3q = ; 

0,58n = ; 
( )  с0 110 24
k

 = MPa, 

( )  с0 112 112,8
k

 = МPа, 

( )  с0 123 59,2
k

 = МPа. 

Voigt  308,07  78,76  255,56  

Reuss 308,07  41,88  280,15  

Hill  308,07  60,32  267,85  

copper, fcc  
9

0 10 −= s–1; 89,3m = ; 

1q =  (complanar cc), 

1,4q =  (noncomplanar cc); 

2,25a = , 148sat = МPа, 

( )  с0 112 15
k

 = МPа. 

Voigt 137,07  54,64  100,64  

Reuss  137,07  33,33  114.,85  

Hill  137,07  43,98  107,74  

titanium, hcp 
4

0 10 −= s–1; 50m = ; 1,4q = ; 

0,53n = ; 
( )  с0 0001 150
k

 = МPа, 

( )  с0 1010 30
k

 = МPа, 

( )  с0 1011 120
k

 = МPа. 

Voig 107,06  44,00  78,02  

Reuss  123,54  38,23  98,31  

Hill  115,3  41,11  88,16  

 

The numerically found integration step does not exceed the calculated 0,0001t = s, which 

corresponds to the strain intensity incremental step 0,0001 = .  
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The meso- and microstructural properties of the material evolves significantly in the process of 

deformation due to the impacts caused by stresses or by kinematic forces at the macrolevel. Thus, an 

opportunity to control of the meso- and microstructure evolution makes it possible to change the 

macrolevel properties of materials that provide specific performance characteristics of finished 

products [34, 35]. 

In modeling a simple shear, the transposed place gradient is given as  

 
1 1 2 2 3 3 1 2= t+ + +F l l l l l l l l , (3) 

where   is the strain rate parameter, t  is the time, 
il , ( 1,3i  ) are the basis vectors of the fixed 

laboratory coordinate system, which indicate the characteristic loading axes. 

 

When the material under study is subjected to complex loading (combined simple shear/tension 

loadings), the transposed place gradient is described by the relation: 

 

 
 

( )( ) ( 

12 1 2

0,5

1 1 2 2 3 3

,      0,1000 ,

1000 ,      1000, 2000 s,t t

t t s

t e e t 



−

 + 
= 

+ − + + 

I l l
F

I l l l l l l
 (4) 

 

where ( ) Нх х х=  is the Macaulay brackets, and ( )Н   is the Heaviside function, 0,001 =  s–1, 

12 0,005 = s–1. 

In modeling cyclic loading, deformations is specified by the following transposed deformation 

gradient:  

 

 1 1 2 2 3 3 1 2 1 3

7 7 7 7
= 3 7cos sin 5 cos 4sin ,

t t t t
t t

T T T T
 

          
+ + + − + +          

          
F l l l l l l l l l l  (5) 

 

where 410 −=  s–1 is the constant parameter, and 1000T = s is the end time of deformation. As 

options for specifying the crystallite orientation distribution in the reference configuration, we use 

either a uniform law or the orientation distribution obtained after rolling (the data for polycrystals 

with HCP structure are taken from [36] (Fig. 3) and for polycrystals with BCC and FCC structures 

from [37]). 

 

 

  

 
 Fig.3. Pole figures showing the texture of the polycrystal titanium sample after rolling [36] for the 

orientation distribution of crystallographic planes  0001  (а) and  10 10  (b). 

4. Residual stresses 

 

Residual stresses are stresses that exist in the bodies under study in the absence of external loads 

[38]. They arise in almost any metals after application of such technological processing techniques 

а b 
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as casting, forging, thermal and mechanical treatment [39]. Moreover, the residual stress intensity 

factor can approach the yield strength. In many cases, the failure of the structures made of high-

strength metals is caused by a combination of different factors, namely, residual stresses occurred in 

materials during the manufacture process and stresses induced in turbine blades, compressors, 

crankshafts, plungers, etc. [40]. Special heat treatment, although having a chance to reduce residual 

stresses, is not always possible, e.g., in the case of large size products. It should be noted that the 

performance degradation of parts will not in any case be associated with residual stresses because 

some technological processes (blasting with shot, rolling with rollers, etc.) provide for the creation of 

residual stresses [38, 40]. For these reasons, the development of technologies that allow producing 

residual stresses to improve the performance properties of metal products is an important task. 

Theoretically, residual stresses can be “induced” so that one can obtain the best characteristics of 

metal products in prescribed directions (for example, the initial flow stresses are greater in the 

direction of tension than in the direction of compression, or vice versa). That makes it possible to 

process metal ingots in such a way that the level and/or distribution of residual stresses in finished 

products will become optimal (for specific operating conditions).  

The main property of residual stresses is their self-balance. According to the structural-scale levels 

at which this property manifests itself, they can be classified into type I, II and III [41, 42]. Residual 

stresses of type 1 (macroscopic) arise during mechanical and thermal treatment, in particular, due to 

phase transformations of metals [41, 39]. They are balanced in the entire volume of the detail, but not 

equal to zero in its individual parts. Residual stresses are induced by the incompatibility of elastic 

deformations caused by the inhomogeneity of the force and temperature fields occurred in the details 

during the manufacture, and are determined either by the magnitude of the elastic deformations that 

appear when cutting parts, or by X-ray analysis. The occurrence of type II residual stresses is 

attributed to the inhomogeneity of plastic deformations at the level of polycrystal grains. These 

stresses are balanced on the scale of one crystallite (grain). Residual stresses of type III are typical 

for the level of substructures (barriers, microdamages, complex dislocation structures) and are 

balanced on the scales of several crystalline cells [42, 39]. 

In this paper, we introduce the concept of residual mesostresses (RMS) that are self-balanced at 

the level of a representative macrovolume; these stresses are not included in the generally accepted 

classification. In modeling RMS, a representative volume should be unloaded after the stage of active 

elastoviscoplastic loading. Moreover, it should be borne in mind that the two-level model applied 

here is based on the Voigt hypothesis, and therefore it is intended for specifying loading conditions 

kinematically. For this reason, we need an iterative procedure that, under kinematic loading applied 

in strain increments, will ensure the fulfillment of =K 0  to the required accuracy at the end of the 

unloading stage. That means that the weighted Kirchhoff stress tensor averaged over a representative 

volume must be equal to zero. 

Let us now describe the unloading procedure for a representative macrovolume. We suppose that 

at an arbitrary (preceding) loading stage the macrostresses K  occur in a representative macrovolume. 

Then, to implement a step-by-step procedure, we write the transposed velocity gradient as 

 

 ( )
1 2Tˆ –χ ,    : ,= =

K
V K K K

K
  (6) 

 

where   (s–1) is the parameter related to the time step size to be determined numerically.  

At the same time, due to the well-known problem of ambiguous definition of the unloaded 

configuration that can be established only up to rotation of the studied volume as a rigid whole, it is 

assumed that the main axes of the tensor K  (or the elastic macrostrain tensor) remain unchanged 

during unloading. It should be noted that, although the unloading of the entire volume of a 

representative macrovolume is elastic, its separate crystallites can experience irreversible 

deformations. That is the reason why we have to use a step-by-step procedure in this study. The 

unloading process is considered completed if the εK ( ε  - small positive number) condition is 

fulfilled. 
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5. The results of numerical experiments  

 

The purpose of the numerical experiments conducted here is to analyze the differences in macro- 

and meso-parameters when anisotropic properties are replaced by equivalent isotropic properties 

gained in simple shear, complex loading and cyclic deformation tests on materials with bcc, fcc, hcp 

lattices and different crystallite orientation distributions. 

Two series of experiments were conducted. In the first experiments, the distribution of crystallite 

orientations in each sample is assumed to obey the uniform law. The sample consists of many 

crystallites with anisotropic or equivalent isotropic properties for each type of lattice. All samples are 

studied in three loading modes described by relations (3)–(5). The second series differs from the first 

one by the non-uniform orientation distribution functions corresponding to rolling textures. For the 

materials with hcp lattices, the distribution function was taken from [36] and, for materials with bcc 

and fcc lattices from [37]. 

During the first experiments (uniform crystallite orientation law in the reference configuration), 

we determined the macro- and meso SSS parameters in the framework of the model representing the 

material with anisotropic elastic properties for bcc, fcc and hcp lattices and for the samples with same 

crystal lattice arrangement, size and orientation and having equivalent isotropic elastic properties [28-

30].  

The samples from each of the groups (samples with anisotropic properties of crystallites and three 

macrosamples with isotropic properties of crystallites) were loaded according to the programs 

described by relations (3)–(5). After the intensity of the accumulated deformation reached 50%, the 

test sample was unloaded to zero values of the macrolevel stress intensity. The initial data and loading 

programs in the second series of experiments were similar to those of the first series, except for the 

non-uniform orientation distributions specified by the corresponding laws. 

Under simple shear, the SSS curves for the sample with anisotropic elastic properties turned out 

to be close to the results obtained for the sample with effective isotropic properties, which were 

assumed to coincide with the averaged elastic characteristics of the polycrystalline sample with the 

uniform crystallite orientation distribution for both bcc and fcc lattices. At the same time, there is a 

segment with curve deviations, namely, a part corresponding to the transition of the sample from 

elastic to elastoplastic state. The analysis of the results of the computational experiment on complex 

monotonic loading implemented according to the law (4) indicates that the calculated stress-strain 

curves practically coincide for all types of lattices (Fig. 4). Only slight deviations happen in the 

elastoplasticity region after a sharp change in the type of loading, carried out when a certain value of 

the accumulated strain intensity reaches 5%. The smallest difference between the results (from the 

data for the sample with anisotropic properties) at the mesolevel was observed for the sample made 

of an equivalent isotropic material the elastic characteristics of which were obtained by the Voigt 

averaging. 

Under cyclic loading specified by relation (5), the polycrystalline sample with uniform crystallite 

orientation distribution demonstrates the most significant deviations of the SSS curves for the hcp 

lattice (Fig. 5). The samples with bcc and fcc lattices are characterized by an almost complete 

coincidence of the dependences of stress intensity on the accumulated strain intensity. It is interesting 

that, despite the periodicity of the prescribed change in the deformed state, the stress intensity 

dependence does not exhibit such behavior, which is a consequence of the changes accumulated by 

the mesostructural parameters (changes in the orientation of crystallite lattices, shears and hardening 

on slip systems) that affect the response. 

Strength characteristics, along with residual stresses, significantly depend on the type of stress 

state. In most works, a loading stiffness parameter (triaxiality factor) is used to characterize the type 

of stress state. This parameter is equal to the ratio of average stress to stress intensity: 

( ) 1 2

1I 3
Θ = , ,

3 2

ср

ср и

и

  
  =  =  

  


   , (7) 

where ( )1I   is the first invariant of the second rank tensor, and  is the Kirchhoff stress deviator

 . 
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Fig.4. Dependences of stress intensities on accumulated strain intensities in polycrystal samples 

with fcc lattices under complex loading and at uniform crystallite orientation distribution 

obtained for materials with various properties by different averaging techniques: anisotropic 

material at the mesolevel (curve A); isotropic, Voigt average (V); isotropic, Reuss average (R); 

isotropic, Hill average (H). 

 

 
Fig.5 Time dependences of stress intensities of materials with hcp lattice under cyclic deformation 

and uniform crystallite orientation distribution (the notation is the same as in Fig.4). 

Normal stresses can be tensile or compressive, and therefore materials fail differently. As experiments 

show, all materials, without exception, are capable of absorbing very high stresses under all-round 

compression, while, under all-round tension, the failure occurs at relatively low stresses. More 

information about the failure criteria can be found in numerous monographs (see, for example, [43–

45]) and in the review paper [46].  

Let us recall that this paper is focused on the model describing (with varying degrees of accuracy) 

the inherent properties in real objects. The purpose of the study is to compare the parameters of the 

samples made of the material with anisotropic elastic properties at the mesolevel and those of the 
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samples in which the elastic properties at the mesolevel are isotropic and determined by one of the 

averaging techniques (Voigt (V), Reuss (R), or Hill (H)). For all representative macrovolume 

crystallites, we determined the differences between the components of the residual stress tensors of 

anisotropic and corresponding isotropic crystallites ( ) Δ N m ij
 , where V,R,HN = , the values of 

triaxility parameters, and the intensities of stress differences 
 Δ ,N m where =1,m M , and M  is the 

number of representative macrovolume mesolevel elements. To compare the results, we used the 

intensities of the differences between the residual mesostress tensors 

( ) ( )
1 2

A A

 

3
Δ = – : –

2

N N

N m m m m m

 
     

 
    , where A ,  N

m m
    are the residual stress deviators in the m -th 

crystallite calculated for anisotropic (А) and isotropic elastic materials with corresponding average 

V,R,HN = . 

We have identified these pairs of crystallites in the materials the elastic properties of which are 

different but all other parameters are identical. In other words, the same crystallite exists in the 

original virtual material, which differs from the other two only by elastic - isotropic or anisotropic – 

properties. Under these circumstances, the intensity of the differences between the Kirchhoff stress 

deviators in the sample is maximum in the norm:  
=1,

Δ max ΔN N m
m M

 =  . 

Table 2 includes the results of the calculations for the case when the polycrystalline samples with 

uniform crystallite orientation distribution are subjected to cyclic loading; the pairs of crystallites are 

identified according to the norm introduced above. The results indicate significant differences in the 

intensities of residual mesostresses and their components; the residual mesostress difference can even 

exceed the yield strength (in the reference configuration). 

 
Table 2. Characteristics of residual mesostresses in the polycrystal samples made of anisotropic and 

isotropic elastic materials at a uniform law of orientation distribution of crystallites in the reference 

configuration under cyclic deformation.  

Compared materials  

 A and V A and R A and H 

Latt

ice  
VΔ , 

MPa 

V

A




 

( )VΔ
ij

 , 

MPa 

RΔ , 

MPa 

R

A




 

( )RΔ
ij

 , 

MPa 

HΔ ,  

MPa 

H

A




 

( )HΔ
ij

 , 

MPa 

B 

B 

C 

89,14 
0,61

0,52
 

24,74 17,42 19,57

17,42 39,08 25,93

19,57 25,93 21,01

− 
 
 
 − 

 98,57 
0,58

0,52
 

12,39 16,25 21,62

16,25 46,54 24,5

21,62 24,5 38,67

− 
 
 
 − 

 104,98 
0,46

0,52
 

28,13 19,9 34,4

19,9 37,17 18,4

34,1 18,4 36,87

− 
 
 
 − − 

 

F 

F 

C 

67,42 
0,72

0,64
 

14,18 12,94 26,1

12,94 24,08 13,7

26,1 13,7 13,3

− 
 
 
 − 

 78,57 
0,58

0,64
 

24,91 13,4 15,6

13,4 38,21 16,14

15,6 16,14 25,85

− 
 
 
 − 

 74,93 
0,70

0,64
 

6,28 14,9 18,1

14,9 23,57 21,08

18,1 21,08 34,07

− 
 
 
 − 

 

H 

C 

P 

114,18 
0,68

0,55
 

15,47 31,27 16,62

31,27 44,23 15,12

16,62 15,12 59,42

− 
 

− 
 − 

 120,23 
0,49

0,55
 

4,99 50,63 35,13

50,63 24,79 16,32

35,13 16,32 29,5

− − 
 

− 
 − − 

 166,88 
0,61

0,55
 

9,31 40,62 3,18

40,62 81,69 11,3

3,18 11,3 90,73

− − 
 

− 
 − − 

 

 

We have analyzed the behavior of samples subjected to loads specified by laws (3)–(5) and the 

above inhomogeneous distributions of initial orientations corresponding to rolling textures. This led 

us to conclude that, for the polycrystalline samples with fcc lattice, the stress intensity–accumulated 

strain intensity curves (4) deviate only slightly, and, for the hcp polycrystals, the differences 

somewhat exceed the deviations shown in Figure 4. For the “stress intensity–accumulated strain 

intensity” curves obtained for the materials loaded according to the law (5), there are no visible 

discrepancies from the results presented in Figure 5. Therefore, of greater interest are the calculated 

data for mesolevel residual stresses, which are summerized in Table 3.  
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Table 3. Characteristics of residual mesostresses in the polycrystal samples made of anisotropic 

and isotropic elastic materials with uniform orientation distribution in the reference configuration 

under cyclic deformation.  
 

Compared materials  

 A and V A and R A and H 

Latt

ice 
VΔ , 

МPa 

V

A




 

( )VΔ
ij

 , 

МPа 

RΔ , 

МPа 

R

A




 

( )RΔ
ij

 , 

МPа 

HΔ ,  

МPа 

H

A




 

( )HΔ
ij

 , 

МPа 

B 

B 

C 

94,63 
0,73

0,66
 

37,28 19,93 21,42

19,93 51,37 18,27

21,42 18,27 33,67

− 
 
 
 − 

 78,54 
0,81

0,66
 

27,45 11,19 31,15

11,19 32,40 17,79

31,15 17,79 32,88

− 
 
 
 − 

 124,7

1 

0,84

0,66
 

36,94 14,07 26,86

14,07 29,42 24,63

26,86 24,63 29,09

− 
 
 
 − 

 

F 

F 

C 

71,12 
0,67

0,57
 

23,91 18,58 29,42

18,58 37,96 21,37

29,42 21,37 26,28

− 
 
 
 − 

 82,08 
0,69

0,57
 

17,97 24,18 29,08

24,18 34,68 27,62

29,08 27,62 37,13

− 
 
 
 − 

 94,47 
0,63

0,57
 

19,51 31,47 10,59

31,47 37,60 19,74

10,59 19,74 41,03

− 
 
 
 − 

 

H 

C 

P 

127,9

7 

0,74

0,61
 

39,11 17,97 17,02

17,97 43,15 26,12

17,02 26,12 18,31

− 
 

− 
 − 

 115,1

4 

0,76

0,61
 

46,74 37,51 39,28

37,51 32,92 27,83

39,28 27,89 43,63

− 
 
 
 − 

 144,5

8 

0,81

0,61
 

37,91 42,07 14,82

42,07 56,29 23,35

14,82 23,35 61,21

− 
 
 
 − − 

 

  

6.  Conclusion 

 

A two-level elastoviscoplastic model for studying processes of deformation of polycrystalline 

samples is described, as well as an algorithm for its implementation, and the results of computational 

experiments performed in the framework of this model, are presented. The samples considered in the 

study were made of isotropic and anisotropic elastic materials with different types of crystal lattice 

and investigated at various laws of crystallite orientation distributions and under different loading 

programs. 

The results of the simulations demonstrate that, for the elastic materials made of polycrystals with 

uniform orientation distribution, the best agreement between the numerical data on macrolevel SSS, 

calculated for isotropic and anisotropic material characteristics, is achieved in polycrystalline samples 

with bcc and hcp lattices under simple shear. Under complex loading, the largest discrepancy occurs 

between the results determined for the polycrystalline samples from materials with an fcc lattice and 

those for the corresponding elastically isotropic samples produced from the materials with the elastic 

characteristics specified by the Reuss and Hill method, and the smallest deviations occur when using 

the Voigt averaging. 

In modeling cyclic loading, the best approximation corresponds to the Hill averaging of the elastic 

characteristics of hcp polycrystals. However, the differences in residual mesostresses can reach great 

values (50–70% of the yield strength), which have a significant effect on the mesolevel stress state 

and the strength properties of products during operation. For the samples of polycrystalline materials 

with initial textures under approproate loading regimes, results similar to those described above were 

obtained.  

The study was financially supported by the Russian Science Foundation (grant no. 17-19-01292). 
 

References 

 

1. Kachanov L.M. Osnovy teorii plastichnosti [Bases of the theory of plasticity]. Moscow, Nauka, 1969. 420 

p. 

2. Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti [Applied theory of plasticity and creep]. 

Moscow, Mashinostroyeniye, 1975. 400 p. 

3. Unksov E.P., Ovchinnikov A.G. (eds.) Teoriya plasticheskikh deformatsiy metallov [Theory of plastic 

deformations of metals] Moscow, Mashinostroyeniye, 1983. 598 p. 

4. Vasin R.A. Opredelyayushchiye sootnosheniya teorii plastichnosti [Defining relations of the theory of 

plasticity]. Itogi nauki i tekhniki. Ser. Mekhanika tverdykh deformiruyemykh tel, 1990, vol. 21, pp. 3-75. 

5. Il’yushin A.A. Plastichnost’. Ch. 1. Uprugo-plasticheskiye deformatsii [Plasticity. Part 1. Elastic-plastic 

deformations]. Moscow, Logos, 2004. 388 p. 

http://dx.doi.org/10.7242/1999-6691/2021.14.4.33


P.V. Trusov & A.S. Sokolov Computational Continuum Mechanics. 2021. Vol. 14. No. 4. pp. 398-412 DOI: 10.7242/1999-6691/2021.14.4.33 

411 

6. Il’yushin A.A. Trudy (1946–1966). T. 2. Plastichnost’ [Proceedings (1946–1966). Vol. 2. Plasticity]. 

Moscow, Fizmatlit, 2004. 480 p. 

7. Horstemeyer M.F. Multiscale modeling: A review // Practical aspects of computational chemistry, ed. J. 

Leszczynski, M.K. Shukla. Springer, 2009. Рp. 87-135. https://doi.org/10.1007/978-90-481-2687-3_4 

8. McDowell D.L. A perspective on trends in multiscale plasticity. Int. J. Plast., 2010, vol. 26, pp. 1280-1309. 

https://doi.org/10.1016/j.ijplas.2010.02.008 

9. Roters F. Advanced material models for the crystal plasticity finite element method: Development of a 

general CPFEM framework. Aachen, RWTH Aachen, 2011. 226 р. 

10. Trusov P.V., Shveykin A.I., Nechaeva E.S., Volegov P.S. Multilevel models of inelastic deformation of 

materials and their application for description of internal structure evolution. Phys. mesomech., 2012, vol. 

15, pp. 155-175. https://doi.org/10.1134/S1029959912020038 

11. Trusov P.V., Shveykin A.I. Mnogourovnevyye modeli mono- i polikristallicheskikh materialov: teoriya, 

algoritmy, primery primeneniya [Multilevel models of mono- and polycrystalline materials: theory, 

algorithms, application examples]. Novosibirsk, Silberian Branch of RAS, 2019. 605 p 

12. Taylor G.I. Plastic strain in metals. J. Inst. Metals, 1938, vol. 62, pp. 307-324. 

13. Lin T.H. Analysis of elastic and plastic strains of a face-centered cubic crystal // J. Mech. Phys. Solid. 1957. 

Vol. 5. P. 143-149. https://doi.org/10.1016/0022-5096(57)90058-3 

14. Sokolov A.S., Trusov P.V. Two-level elastic-viscoplastic model: application to the analysis of the crystal 

anisotropy influence. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2020, vol. 13, no. 

2, pp. 219-230. https://doi.org/10.7242/1999-6691/2020.13.2.17 

15. Pozdeyev A.A., Trusov P.V., Nyashin Yu.I. Bol’shiye uprugoplasticheskiye deformatsii: teoriya, 

algoritmy, prilozheniya [Large elastic-plastic strains: theory, algorithms, applications]. Moscow, Nauka, 

1986. 232 p. 

16. Trusov P.V., Shveykin A.I., Yanz A.Yu. Motion decomposition, frame-indifferent derivatives, and 

constitutive relations at large displacement gradients from the viewpoint of multilevel modeling. Phys. 

Mesomech., 2017, vol. 20, pp. 357-376. https://doi.org/10.1134/S1029959917040014 

17. Trusov P.V., Shveykin A.I. On motion decomposition and constitutive relations in geometrically nonlinear 

elastoviscoplasticity of crystallites. Phys. Mesomech., 2016, vol. 19, pp. 377-391. 

https://doi.org/10.1134/S1029959917040026 

18. Lurie A.I. Nonlinear theory of elasticity. Elsevier, 1990. 617 p. 

19. Kroner E. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen [Continuum theory of 

dislocations and residual stresses]. Arch. Rational Mech. Anal., 1959, vol.  4, pp. 273-334. 

https://doi.org/10.1007/BF00281393 

20. Lee E.H. Elastic-plastic deformation at finite strain. J. Appl. Mech., 1969, vol. 36, pp. 1-6. 

https://doi.org/10.1115/1.3564580 

21. Zhang Z., Cuddihy M.A., Dunne F.P.E. On rate-dependent polycrystal deformation: the temperature 

sensitivity of cold dwell fatigue. Proc. R. Soc. A, 2015, vol. 471, 20150214. 

https://doi.org/10.1098/rspa.2015.0214 

22. Feng B., Bronkhorst C.A., Addessio F.L., Morrow B.M., Cerreta E.K., Lookman T., Lebensohn R.A., Low 

T. Coupled elasticity, plastic slip, and twinning in single crystal titanium loaded by split-Hopkinson 

pressure bar. J. Mech. Phys. Solid., 2018, vol. 119, pp. 274-297. https://doi.org/10.1016/j.jmps.2018.06.018 

23. Zhang Z., Jun T.-S., Britton T.B., Dunne F.P.E. Determination of Ti-6242 α and β slip properties using 

micro-pillar test and computational crystal plasticity. J. Mech. Phys. Solid., 2016, vol. 95, pp. 393-410. 

https://doi.org/10.1016/j.jmps.2016.06.007 

24. Zhang Z., Jun T.-S., Britton T.B., Dunne F.P.E. Intrinsic anisotropy of strain rate sensitivity in single crystal 

alpha titanium. Acta Mater., 2016, vol. 118, pp. 317-330. https://doi.org/10.1016/j.actamat.2016.07.044 

25. Matsyuk K.V., Trusov P.V. Model for description of viscoelastoplastic deformation of hcp crystals: 

asymmetric stress measures, hardening laws. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 

2013, no. 4, pp. 75-105. https://doi.org/10.15593/perm.mech/2013.4.75-105 

26. Wu X., Kalidindi S.R., Necker C., Salemet A.A. Modeling anisotropic stress-strain response and 

crystallographic texture evolution on α-titanium during large plastic deformation using Taylor-type models: 

Influence of initial texture and purity. Metall. Mater. Trans. A, 2008, vol. 39, pp. 3046-3054. 

https://doi.org/10.1007/S11661-008-9651-X 

27. Kondratev N.S., Trusov P.V. A mathematical model for deformation of BCC single crystals taking into 

consideration the twinning mechanism. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 

2011, vol. 4, no. 4, pp. 20-33. https://doi.org/10.7242/1999-6691/2011.4.4.36 

28. Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh tel [The theory of  elasticity of micro-

inhomogeneous bodies]. Moscow, Nauka, 1977. 399 p. 

http://dx.doi.org/10.7242/1999-6691/2021.14.4.33
https://doi.org/10.1007/978-90-481-2687-3_4
https://doi.org/10.1016/j.ijplas.2010.02.008
https://doi.org/10.1134/S1029959912020038
https://doi.org/10.1016/0022-5096(57)90058-3
https://doi.org/10.7242/1999-6691/2020.13.2.17
https://doi.org/10.1134/S1029959917040014
https://doi.org/10.1134/S1029959917040026
https://doi.org/10.1007/BF00281393
https://doi.org/10.1115/1.3564580
https://doi.org/10.1098/rspa.2015.0214
https://doi.org/10.1016/j.jmps.2018.06.018
https://doi.org/10.1016/j.jmps.2016.06.007
https://doi.org/10.1016/j.actamat.2016.07.044
https://doi.org/10.15593/perm.mech/2013.4.75-105
https://doi.org/10.1007/S11661-008-9651-X
https://doi.org/10.7242/1999-6691/2011.4.4.36


P.V. Trusov & A.S. Sokolov Computational Continuum Mechanics. 2021. Vol. 14. No. 4. pp. 398-412 DOI: 10.7242/1999-6691/2021.14.4.33 

412 

29. Hirth J., Lothe J. Theory of Dislocations. McGraw-Hill, 1968. 780 p. 

30. Newnham R.E. Properties of materials. Anisotropy, symmetry, structure. Oxford University Press, 2005. 

390 p. 

31. Man C.-S., Huang M. A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals 

with arbitrary crystal and texture symmetries. J. Elast., 2011, vol. 105, pp. 29-48. 

https://doi.org/10.1007/s10659-011-9312-y 

32. Krivosheina M.N., Tuch E.V., Khon Yu.A. Applying the Mises-Hill criterion to modeling the dynamic 

loading of highly anisotropic materials. Bull. Russ. Acad. Sci. Phys., 2012, vol. 76, pp. 80-84. 

https://doi.org/10.3103/S1062873812010169 

33. Krivosheina M.N., Kobenko S.V., Tuch E.V. Averaging of properties of anisotropic structural materials in 

numerical simulation of their fracture. Phys. Mesomech., 2010, vol. 13, no. 2, pp. 55-60. 

34. Raab G.I., Aleshin G.N., Fakhredinova E.I., Raab A.G., Asfandiyarov R.N., Aksenov D.A., Kodirov I.S. 

Prospects of development of new pilot-commercial SPD methods. MTD, 2019, vol. 1, no. 1, pp. 48-57. 

35. Raab G.I., Kodirov I.S., Aleshin G.N., Raab A.G., Tsenev N.K. Influence of special features of the gradient 

structure formation during severe plastic deformation of alloys with different types of a crystalline lattice. 

Vestnik MGTU im. G.I. Nosova – Vestnik of Nosov Magnitogorsk State Technical University, 2019, vol. 

17, no. 1, pp. 64-75. https://doi.org/10.18503/1995-2732-2019-17-1-64-75 

36. Hama T., Kobuki A., Takuda H. Crystal-plasticity finite-element analysis of anisotropic deformation 

behavior in a commercially pure titanium Grade 1 sheet. Int. J. Plast., 2017, vol. 91, pp. 77-108. 

https://doi.org/10.1016/j.ijplas.2016.12.005 

37. Ji Y.T., Suo H.L., Ma L., Wang Z., Yu D., Shaheen K., Cui J., Liu J., Gao M.M. Formation of 

recrystallization cube texture in highly rolled Ni–9.3 at % W. Phys. Metals Metallogr., 2020, vol. 121, pp. 

248-253. https://doi.org/10.1134/S0031918X20020180 

38. Birger I.A. Ostatochnyye napryazheniya [Residual stresses]. Moscow, Mashgiz, 1963. 232 p. 

39. Pozdeyev A.A., Nyashin Yu.I., Trusov P.V. Ostatochnyye napryazheniya: teoriya i prilozheniya Residual 

stresses: theory and applications]. Moscow, Nauka, 1974. 112 p. 

40. Birger I.A., Shor B.F., Iosilevich G.V. Raschet na prochnost’ detaley mashin [Calculation of the strength 

of machine parts]. Moscow, Mashinostroyeniye, 1979. 702 p. 

41. Abramov V.V. Ostatochnyye napryazheniya i deformatsii v metallakh [Residual stresses and deformations 

in metals]. Moscow, State Scientific and Technical Publishing House of Machine-building literature, 1963. 

356 p. 

42. Fridman Ya.B. Mekhanicheskiye svoystva metallov. Ch. 1. Deformatsiya i razrusheniye [Mechanical 

properties of metals. Part 1. Deformation and Destruction]. Moscow, Mashinostroyeniye, 1974. 472 p. 

43. Kachanov L.M. Osnovy mekhaniki razrusheniya [Fundamentals of fracture mechanics]. Moscow, Nauka, 

1974. 312p. 

44. Collins J.A. Failure of materials in mechanical design: Analysis, prediction, prevention. John Wiley & 

Sons, 1981. 629 p. 

45. Rabotnov Yu.N. Vvedeniye v mekhaniku razrusheniya [Introduction to fracture mechanics]. Moscow, 

Nauka, 1987. 80 p. 

46. Besson J. Continuum models of ductile fracture: A Review. Int. J. Damage Mechanics, 2010, vol. 19, pp. 

3-52. https://doi.org/10.1177/1056789509103482 

 

The authors declare no conflict of interests. 

The paper was received on 1.10.2021. 

The paper was accepted for publication on 3.11.2021. 

http://dx.doi.org/10.7242/1999-6691/2021.14.4.33
https://doi.org/10.1007/s10659-011-9312-y
https://doi.org/10.3103/S1062873812010169
https://doi.org/10.18503/1995-2732-2019-17-1-64-75
https://doi.org/10.1016/j.ijplas.2016.12.005
https://doi.org/10.1134/S0031918X20020180
https://doi.org/10.1177/1056789509103482

