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The initiation of an edge transverse shear crack in elastoplastic materials that fail under ultimate strain 

is considered. The crack propagation criterion is formulated using a modified Leonov – Panasyuk – Dugdale 

model which includes an additional parameter — the width of the plasticity zone. The coupled quasi-brittle 

fracture criterion for mode II cracks in an elastoplastic material is specified for small-scale yield conditions 

in the presence of a singularity of the stress field in the vicinity of the crack tip. The coupled fracture 

criterion includes the strain criterion, which is used at the crack tip, as well as the stress criterion, which is 

applied at the model crack tip. The lengths of the initial and model cracks differ by the length of the pre-

fracture zone. The sequential analysis of the possibility of applying the proposed fracture criterion in 

determining the critical loads for solids containing edge transverse shear cracks at the interface of different 

media is performed. Quasi-brittle fracture diagrams are constructed for a composite plate with an edge 

crack under plane strain and plane stress conditions. The analysis of the parameters included in the proposed 

model of quasi-brittle fracture is carried out. The model parameters are proposed to be selected by 

approximation of simple shear diagram and critical stress intensity factor. The critical loads were found 

numerically for the quasi-ductile and ductile fracture types. The finite element method is used to solve the 

problem of drawing out a reinforcing layer from a metal composite under quasi-static loading. The process 

of propagation of plastic zones in the vicinity of the crack tip is described consistently. It is shown that the 

shapes of the constructed plastic zones differ significantly from the well-known classical concepts. 
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1. Introduction 

 

The inevitable formation of cracks is one of the most important factors causing the destruction of 

engineering structures. The most common crack-like defects are located in places of stress 

concentration, as a rule in the vicinity of the tips of cuts, at the boundaries of holes, and in composite 

materials along the interface between media. Therefore, the problems of formulation simple, suitable 

for engineering calculations, analytical models of the fracture process of materials and structures are 

relevant.  

The advantages and disadvantages of stress and strain fracture criteria are discussed in [1–5], and 

all reasoning is carried out only on the basis of one-parameter local fracture criteria for brittle and 

quasi-brittle materials. However, another view of the fracture process is possible, when it occurs 

according to a non-classical fracture scheme, in which, in addition to its two classical states of the 

material (solid and fractured), a third, intermediate state is taken into account. This state corresponds 

to pre-fracture, taking into account damage accumulation in the vicinity of stress concentrators. The 

use of multiparameter fracture criteria suggests itself when considering a nonclassical fracture scheme 

[6–11]. The state of a mechanically stressed material is between brittle and ductile, the difference 

between which, in the mechanical aspect, is determined by the ratio of energy costs for reversible and 

irreversible deformation phenomena. In this regard, there is a need to assess the state of the material 

according to two criteria with a continuous transition from one to another. The implementation of the 

two-parameter fracture criterion makes it possible to combine the areas of applicability of one-

parameter fracture criteria that correspond to different limit states of the material. Such a criterion 

can be based on one-parameter criteria: force, deformation, energy, and their combinations [12–19]. 

In [20–22], a two-parameter (coupled) integral fracture criterion in an elastoplastic material was 

proposed and fracture diagrams were constructed for flat specimens in the presence of sharp internal 

cracks of normal separation (fracture mode I). A simple representation of the pre-fracture zone in the 
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form of a rectangle was obtained on the basis of the modified Leonov–Panasyuk–Dugdale model [23, 

24] and the Neuber–Novozhilov approach for materials with a structure [25, 26]. Critical curves are 

plotted under the conditions of necessity and sufficiency of fracture criteria on the “crack length–

stress” plane, dividing this plane into three subdomains. These areas correspond to the absence of 

fracture, the accumulation of damage in the pre-fracture zone, and the separation of the specimen into 

parts. The selection of fracture diagrams constant in the analytical description of quasi-brittle 

materials in the presence of cracks is carried out using the approximation of the classical “stress-

strain” diagram of the initial material and the critical stress intensity factor (SIF). It should be noted 

that the dual fracture criterion proposed by Leguilon [3] is suitable only for brittle fracture. 

In this article, the couple fracture criterion is used to determine critical loads for the mode II edge 

crack in a plate made of an elastoplastic material. The proposed approach is based on the notion that 

the nucleation and growth of cracks, regardless of temperature, are preceded by the following 

processes: elastic deformation of the material, transition to the plastic state, development of plastic 

deformations, exhaustion of the plasticity resource, and fracture. Cold brittleness, which is a 

consequence of a decrease in the plasticity of the material, is determined from static tests. In a number 

of materials at low temperatures, in addition to reducing 

plasticity, a crack is able to pass through the grain, which also 

reduces the fracture toughness of the material. 

The proposed model uses a non-classical scheme of material 

failure, when, along with the continuous and destroyed states, 

some intermediate state of the material with accumulated 

damage is considered. The results obtained in this work make it 

possible to evaluate the bearing capacity of structures with 

cracks in a wider range of loading conditions than it is possible 

with one-parameter criteria of fracture mechanics. 

 

2. Formulation of the problem 

 

The most common crack-like defects are located in 

composites along the interface. Therefore, the study of the stress-strain state in the problem of the 

transverse shear crack propagation in a composite is of interest. A composite piecewise homogeneous 

bimetal plate is considered. The plate width is L ; the plate height is H ; the edge crack of length 
0l  

is located on the flat interface of two materials 1 and 2 (Fig.1). The surface of the crack is free from 

loads, 
 is the shear stress at the edges of the plate. The fracture mode II is realized. The materials 

of the plate are considered to be elastic – perfectly plastic: 
1G , 

2G  are the shear moduli; 
1 , 

2  are 

the Poisson's ratios; 
1Y  

2Y  are the yield strengths under simple shear.  

Let us assume that a flat transverse shear crack propagates in a straight line. In addition to a real 

length crack-cut 
0l , a model crack-cut is introduced into consideration, the length of which is 

0l l b= + , where b  is the prefracture zone length on continuation of the real crack. The fracture 

problem has two linear scales: if the average grain diameter d  is determined by the structure of the 

material, then the second linear scale is generated by the system itself. This second linear scale is the 

length of the pre-fracture zone b , which changes in accordance with: 1) the length of the real crack 

and 2) the intensity of loading change. It should be noted that the critical length of the pre-fracture 

zone b  – is a well-defined parameter for a single loading of quasi-brittle materials ( 0l l b = +  – 

critical macrocrack length).  

The ( ) −  strain diagram is obtained when testing the specimen under shear (Fig. 2), where   is 

the shear stress;   is the shear strain. Let us take the simplest approximation of the real ( ) − - 

diagram of the material under study, when this diagram is approximated by a two-link polyline. With 

a bi-linear approximation of the initial material diagram, the material is replaced by an elastic – 

perfectly plastic material, with an ultimate strain, upon reaching which the material is destroyed. Fig. 

 
Fig. 1. Scheme of loading the 

bimetallic plate with the edge crack 

along the material interface. 
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2 shows the original ( ) − - diagram (curve 1) and its two-link approximation (curve 2). The 

parameters of this approximation are chosen so that the areas under curves 1 and 2 coincide. The 

curve 2 is determined by the parameters: G  is the shear modulus; 
Y  is the shear yield strength; 

0  

is the maximum elastic strain; 
1  is the maximum strain. The yield strength and maximum elastic 

strain are related by the relation: 
0Y G = . The approximation of the ( ) − - diagrams at the section 

0 1     can be interpreted as a perfect plasticity, and the ratio 
1 0 0( ) /  −  as the ductility of the 

material under a monotonic shear.  

It is assumed that the region of nonlinear effects is small compared to the crack length in quasi-

brittle fracture. This allows us to consider that the size of this region and the intensity of plastic 

deformations in it are entirely controlled by the stress intensity factor
IIK  and the yield strength 

Y . 

This region is so small that the stress field around it is still described by the asymptotic formulas [27]. 

The type of material failure can be classified according to the relative size of the pre-fracture zone as 

follows: 0b =  – brittle, 
0/ 1b l  – quasi-brittle, 

0/ 1b l   – quasi-viscous, 
0/ 1b l   – viscous [20-

22]. 

 

3. The Leonov - Panasyuk – Dugdale fracture model 

 

Assume that materials 1 and 2 of the upper and lower halves differ only in different shear yield 

strengths
1 2Y Y Y  =  , i. e. the case of an "almost" homogeneous plate is considered. The stress-

strain state near the crack tip is investigated, and a model is constructed to describe the delamination 

of the composite, assuming that the crack does not 

change its initially straight direction during 

propagation. Let d  be the characteristic linear size of 

the material structure (average grain diameter) [22]. 

The Neiber–Novozhilov approach [25, 26] makes it 

possible to use solutions for media with a structure 

that have a singular component with an integrable 

singularity. 

When constructing diagrams of quasi-brittle 

fracture, sufficient fracture criteria are used [20–22] 

in a wide range of crack lengths. The sufficient 

coupled fracture criterion can be represented by two 

relations for short macrocracks and medium microcracks:  

0

1
( )

d

xy Yx dx
d

 = ,       (1) 

*2 ( )u b  − = .      (2) 

Here, ( )xy x  – shear stresses on the continuation of a model crack in a rectangular coordinate 

system Oxy , moreover, the origin of coordinates coincides with the tip of the model crack in the 

modified Leonov – Panasyuk – Dugdale model [23, 24], and the axis Ox  is directed along the crack 

(Fig. 3, а); 2 2 ( )u u x=  is the total transverse displacement (displacement difference of the 

corresponding points) of the model crack faces ( 0x  );    – is the critical transverse displacement 

of the crack edges for a homogeneous material (in this displacement, the structure of the material at 

the tip of a real crack is destroyed due to the shear); b  is the critical length of the pre-fracture zone. 

According to V.V. Novozhilov’ terminology [26], criterion (1) is necessary, since it controls the 

beginning of the fracture process and the set of conditions (1), (2) is a sufficient criterion for fracture; 

the critical values obtained according to the sufficient and necessary fracture criteria are marked with 

the upper symbols   and 0  respectively. The necessity of criterion (1) lies in the fact that it controls 

the beginning of the destruction process, and the set of criteria (1), (2) is sufficient, since when both 

 

Fig. 2. The original ( ) − - diagram (curve 

1) and its bi-linear approximation (curve 2). 
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conditions are met, the final fracture of the specimen occurs. It should be noted that the proposed 

criterion (1), (2) is dual: the formulation of the strain fracture criterion (2) refers to the tip of the 

original crack, and the stress criterion (1) for shear stresses, taking into account averaging, to the tip 

of the model crack. 

Figure 3 shows shear stresses
xy Y = − , acting on the crack extension according to the Leonov–

Panasyuk–Dugdale model, and an approximation of the plastic zone (conventionally depicted as an 

ellipse) in the form of a rectangular pre-fracture zone with sides a  and b  homogeneous (
1 2Y Y = ) 

material (Fig. 3b). Stresses
xy Y = − , on the edges of the model crack in the pre-fracture zone, 

opposite in sign to the stresses
xy =  on the plate faces, prevent the crack from opening in the 

transverse direction. The pre-fracture zone occupies only a part of the plastic zone. 

 

  
Fig. 3. Shear stresses acting, according to the Leonov–Panasyuk–Dugdale model, on the extension of 

a crack (а); approximation of the plastic zone in the form of a rectangular pre-fracture zone of a 

homogeneous material (b). 

 

4. Diagrams of quasi-brittle fracture of a biomaterial 

 

Shear stress field ( )xy x  on the extension of a model crack 0x   can be represented as the sum 

of two terms [28]: 

 

 ( ) II

2
xy nom

K
x

x
 


= + . (3) 

 

where 
nom rY =  — nominal stresses, otherwise, estimation of the regular part of the stress field in 

the vicinity of the model crack tip; ( )r rY Y l L=  is the correction factor that takes into account the 

width of the plate L , 
0l l b= + ; 

II II II 0bK K K= +   is the total stress intensity factor, where 
II 0K    

s the stress intensity factor generated by specified test conditions, 
II 0bK   is the stress intensity factor 

generated by constant stresses 
Y− , acting in the pre-fracture zone. For definiteness, the stresses

 

and 
nom  are considered positive, and the stresses 

Y− , acting in the pre-fracture zone are negative. 

The terms in relation (3) are the singular and regular parts of the solution, respectively. In the dual 

criterion, equality (1) controls the process of reaching the yield strength
Y  by averaged stresses, and 

equality (2) describes the transverse shear at the tip of a real macrocrack.  

Estimate singular components of stress fields for edge cracks. Since the deformation of materials 

is measured under conditions of small-scale yield, specimens with edge cracks for the initial SIF have 

ideas [29]: 

 

 II sK Y l  = ,      
2

tg
2

s

L l
Y

l L




= ,      II

2
arccos 1b Y

b
K l

l
 



 
= − − 

 
. (4) 

 

а b 

http://dx.doi.org/10.7242/1999-6691/2021.14.3.28


V.D Kurguzov & N.V. Fedorova Computational Continuum Mechanics. 2021. Vol. 14. No. 3. pp. 333-348 DOI: 10.7242/1999-6691/2021.14.3.28 

337 

When considering quasi-brittle fracture under low-scale yield conditions, taking into account the 

approximation: 

 

 1
b

l
 , (5) 

 

up to values of the highest order of smallness for the multiplier ( )arccos 1 b l−  in relation (4) the 

expression is true: ( )arccos 1 2b l b l−  . The final simplified notation 
IIbK  will be as follows: 

 

 II

2
2b Y

b
K 


= − . (6) 

 

The correction factor ( )r rY Y l L=  is taken in the form: ( )rY L L l= − , which corresponds to the 

approximation of the strength of material. As l L→ , then 
nom → . That shows an increase in 

stresses when the net cross section decreases to zero at a constant load. For an edge crack of a 

transverse shear in a half-plane 1s rY Y= = . 

Under the conditions of small-scale yield (5), in the presence of a singular component in the 

solution and the rejection of secondary terms, the displacement of the model crack edges can be 

represented as [28]: 

 

 ( ) II

1 2
, 0

4

x
u x K x

G





+ −
=  , (7) 

 

where 
0YG  =  is the shear modulus of a homogeneous material,   is the stress state parameter (

3 4 = −  for plane strain, ( ) ( )3 1  = − +  for plane stress). 

The critical displacement of the model crack edges   in relation (2) depends on the plasticity 

margin of the material under study (
1 0 − , see Fig. 2) and the width of the prefracture zone at the 

tip of the real crack: 

 

 ( )1 0m a   = − , (8) 

 

where m  is the correction factor. Assume that in the case of a localized plastic flow, the width of the 

prefracture zone a  in relation (8) is proportional to the diameter of the plastic zone for a transverse 

shear crack in ideally plastic bodies. In an approximate formulation, the shape and dimensions of the 

plastic zone in the vicinity of the tip of a transverse shear crack in a homogeneous material for plane 

deformation using the von Mises yield criterion are determined by the relation [30]: 

 

 ( ) ( ) ( )
2

22II

2

3 9
cos 1 2 1 cos

4 2 2
p

Y

K
r    


  

= + + − − 
 

. (9) 

 

where pr  is the radius of the plastic zone;   is the polar angle; 3Y Y =  is the uniaxial strained yield 

strength. For a plane stress state, the shape of the plastic zone can be easily determined from (9), 

assuming 0 = . Figure 4 shows the boundaries of plastic zones, plotted in dimensionless variables 

( )2 2

II4 Y pr K   , in the vicinity of the tip of the transverse shear crack for a homogeneous material 
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(
1 2Y Y = ) and a bimaterial. It is assumed that at

1 2Y Y   the plastic zone is exactly equal to half of 

the plastic zone of a homogeneous material. 

Assuming in (9) 2 =  for a homogeneous material under plane deformation, we obtain: 

 

 ( ) ( )
2

2 2
2 2II II II

2 2
2 3 2 1 2 3 2 1 2

2 4 12
p

Y Y Y

K K K
a r

 
 

   
  

      = = + − = + − =          
, (10) 

 

where ( )
2

3 2 1 2 12  = + −
 

. For a one-sided plasticity zone, the value a  in (10) should be reduced 

by half. The plane stress state follows from (10) at 0 = . The critical shear of the model crack edges 

   in relation (8) is chosen so that the material at the tip of a real crack is destroyed in the case when 

the limiting deformation of the material 
1  is reached. 

 

  

 

Estimate the critical state of the material at the crack tip. Relations (3), (4), (6)–(8), (10) contain 

all the necessary analytical expressions for applying the sufficient (double) criterion (1), (2). By 

integrating in (1), we find: 

 ( )II
2

Y r

d
K Y


  

= − . (11) 

 

Substituting (7), (8), (10) into (2), we obtain: 

 

 ( )
2

II
II 1 0

1 2

2 Y

Kb
K m

G

 
 

  




 +

= −  
 

. (12) 

 

Transform (11) using relations (4) for the SIF
II II IIbK K K= + : 

 

 
* * *

*

2 2 2 2
1s r

l l b
Y Y

d d l
 



 

 − = − . (13) 

 

Here Y   

 =  is the dimensionless critical stresses in the plate. Taking into account that 

0YG  = , from (12): 

 

Fig. 4. The boundaries of plastic zones (according to the Mises criterion) in the vicinity of the tip of a 

transverse shear crack in a homogeneous material (а) and a one-sided plasticity zone in a bimaterial (б); 

plane deformation at 0,25 =  (curve 1, plane stress state (2). 

а b 
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 ( )
* *

2

II* *

2 2 2 2

1
s s

b b m
Y Y

l l


  

 

 

 

 
− = 

  + 

, (14) 

 

where ( )II 1 0 0   = −  is the parameter characterizing the margin of plasticity in shear. After 

opening the brackets on the left side of equation (14), the factor b l  , appears, which, due to 

inequality (5), can be discarded as a value of a higher order of smallness compared to b l  . As a 

result, the system of equations (13), (14) will contain terms with the factor b l  .  

Solving the system of equations, (13), (14), we find analytical expressions for the dimensionless 

critical length of the pre-fracture zone b b l  =  and dimensionless critical load 
Y   

 = : 

 

 

2

II2
1

s

m
b Y


 



 



 
=  

+ 
, (15) 

 

1

II

4
1 2

( 1)
r s

m
Y Y l


 

 

−

 



  
= + −  

+  
, (16) 

 

where l l d =  is the dimensionless critical crack length. It follows from the condition of the 

ultimate load limited 1 

   that in (16) the expression in parentheses must be positive. As a result, 

we obtain a limit on the plasticity margin of the material: 

 

 
( )

II

1

4
m

m

 
 



+
 = . (17) 

 

Inequality (17) is the constraint under 

which quasi-brittle fracture occurs under 

conditions of small-scale yield of a 

homogeneous material in the pre-fracture 

zone. Figure 5 shows the dependence 
m  on 

the Poisson's ratio for the plane stress state 

(curve 1) and plane strain (curve 2) at the 

value of the correction factor 1m = . As can 

be seen from the presented plots, curve 1 

passes below curve 2 for any 0 0,5  . 

Taking into account the range of parameters 

  and  , we find that for any  under plane 

deformation and plane stress state, the 

inequality
II 5,027   should be satisfied. 

In the limit at 
1 0 →  relation (16) implies an expression corresponding to the required failure 

criterion: 

 

 ( )
1

0

02r sY Y l
−

 = + . (18) 

 

 
Fig. 5. Dependence m  (see (17)) on Poisson's ratio 

  in the case of a plane stress state (curve 1), for plane 

strain (2). 
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Here 0 0

Y   =  is the dimensionless critical load; 
0 0l l d=  is the dimensionless length of the 

initial crack. Relation (18) describes the brittle fracture of materials. It is obvious that 0  

   at 
0l l

. 

The effective diameter of the fracture structure d  for sufficiently long cracks is found from the 

formula [12]: 

 

 

2

II2 c

Y

K
d

 

 
=  

 
, (19) 

 

where 
IIcK  is the critical SIF at destruction in II mode. If the critical SIF

IIcK  and the classical ( ) −

-diagram (more precisely, its approximation) were obtained in two laboratory experiments, by using 

three parameters
II, ,Yd   , in a wide range of crack lengths, two critical curves can be plotted: 

( )0 0

0 ,l L  = , ( ),l L   

 = , which depend on the crack lengths
0l , l  and the dimensionless plate 

width L L d= .  

Let us combine compatible plane ( )0

0 ,l   and ( ),l  

 , and in the “crack length–stress” 

coordinates ( ),l  , where l l d= , 
Y   = , we plot diagrams of quasi-brittle fracture for a 

bimetallic plate (hereinafter referred to as the specimen). Let the loading intensity be given 
. Then 

the diagram of quasi-brittle fracture makes it possible to estimate the state of the body with a crack. 

Two critical curves 0  and  


 divide the plane ( ),l   into three parts: a subregion 0   , where 

there are no damages; subdomain 0   

    , where damage accumulation in the pre-fracture zone 

takes place in the material; subdomain   

  , where failure occurs under monotonic loading. 

Figure 6 shows the dimensionless critical stresses ( )0 0

0 ,l L  =  (curves 1–5) and

( )II, ,l L    

 =  (curves 1’–5’) of samples with an edge crack in double logarithmic coordinates. 

For a specific implementation of the calculations, the following parameters were chosen: 

200, 400, 800,1600,L =   for pairs of curves 1–1’, 2–2’, 3–3’, 4–4’, 5–5’, respectively, and 

( )( )II4 1 0,6m   + = . Pairs of curves 1–1’, 2–2’, 3–3’, 4–4’, 5–5’ represent quasi-brittle fracture 

diagrams for the considered type of specimens made from a homogeneous material. 

Thus, formulas have been obtained for calculating the critical breaking load (16) and, through it, 

the critical length of the pre-fracture zone (see 15). These expressions are suitable for both 

homogeneous and "almost" homogeneous 

samples, when materials 1 and 2 of the upper 

and lower halves of the plate differ only in 

shear yield strength
1 2Y Y  , and the shear 

moduli, Poisson's ratios and the characteristic 

linear dimensions of the material structures are 

the same. It is assumed that only one of the 

weakest components is in such a bimaterial 

under plasticity conditions, and the width of the 

pre-fracture zone characteristic of it in the 

bimaterial is approximately chosen as the width 

of the pre-fracture zone. In this case, in 

formulas (15)–(17) one should put ( )
2

3 2 1 2 24  = + −
 

. 

 
 

Fig.6. Quasi-brittle fracture diagrams. 
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Let us consider an edge crack at the connection line of two dissimilar materials with elastic 

constants 
1G , 

1  (upper half), 
2G , 

2  (lower half) и and shear yield strengths 
1 2Y Y  . Then, under 

the action of both pure tension (I mode) and pure shear (II mode), tangential and normal stresses (I + 

II mode) will appear on the continuation of the crack in a solid body. As a result, when implementing 

the failure criterion for dissimilar materials, it is necessary to take into account both stress intensity 

factors 
IK  and 

IIK , in contrast to a homogeneous medium [31–34]. The expressions for the stress 

components obtained in [34] are a good approximation for describing the behavior of a composite 

body, with the exception of the regions located near the crack tips. However, the expressions for the 

coefficients
IK  and 

IIK  proposed in [33] include the logarithm of the crack length, so when they are 

substituted into the corresponding equations above, the results will be unphysical. 

From a practical point of view, such a parameter as the rate of release of elastic energy, which is 

identical to the Rice–Cherepanov integral [35, 36] seems to be more suitable when calculating the 

strength of structures under conditions of elastoplastic deformation. J -integral is often used as a 

failure parameter [37]. The expression for the J -integral in terms of stress intensity factors has the 

following form [38]: 

 

 1 2

1 2

1 11

16
J K K

G G

  + +
= + 

 
, (20) 

 

where 
I IIK K iK= −  is complex stress intensity factor, the bar above indicates the complex conjugate 

value. In [39] the concept of the equivalent stress intensity factor: 
eK KK= , was introduced, with 

the help of which it was found that in a wide range of changes in the 
1 2G G  

eK  differs from 
IIK  by 

less than 4.5% for plane strain, and less than 5.1% for a plane stress state. Therefore, in the case of 

substantially heterogeneous materials, it can be considered fulfilled with the error of up to 5% of the 

ratio, (15)–(18), which is quite acceptable from an engineering point of view. For calculations, you 

should choose the characteristics of the material with a lower yield strength. 

 

5. Computer simulation 

 

An approximate statement of the problem of localized plastic flow is formulated in linear fracture 

mechanics and implies that the solution in the elastic region is described only by the main terms of 

the asymptotic expansion in the vicinity of the crack tip (3), the solution in the plastic zone is not 

considered at all, and the boundary of localized plastic flow (9) is determined based on the elastic 

stress field and the selected yield criterion. Since here we are not talking about any attempt at 

elastoplastic analysis, it is clear that the results obtained are far from reality and cannot give reliable 

estimates of the shape and size of the plastic zone [20]. 

Let us use the finite element method for numerical simulation of the real shape of the plastic zone 

propagating along the interface between two materials. Consider a plate with the width of 25L =  mm 

(axis Ox ), the length of 50H = mm with a flat edge crack of the length 
0 5l =  mm. The plate is 

deformed under simple shear conditions under the action of shear stress  , applied to the edges H  

and faces L  of the plate in opposite directions, as shown in Figure 7. Plane deformation conditions 

are assumed to be satisfied. The edge crack is located at the same distance from the short faces, and 

its front is parallel to the axis Ox . The kinematic boundary conditions on the faces H  with 

coordinates 0y =  and 50y =  are given as 0= v , and at the crack tip with coordinates 25y = , 5x =  

the boundary conditions are 0u = =v  for a homogeneous plate (shown in Fig. 7) and 0u = , if it is 

bimetallic. 

The problem was solved in two versions: a) the plate material was considered homogeneous with 

Young's modulus 200Е =  GPa, Poisson's ratio 0,25 = , yield strength in uniaxial tension 400Y =  
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MPa and, therefore, shear yield strength 3 230,94Y Y = =  MPa, the applied load was equal to

200 =  MPa; b) a bimetallic plate with a crack at the interface, the elastic characteristics of the 

materials were the same, only the yield strengths differed: 
1 200Y =  MPa, 

2 400Y =  MPa, the load

100 =  MPa acted. 

The computational domain was uniformly divided into 

80,000 nodal rectangular elements with a quadratic 

approximation of displacements. The mesh of finite 

elements was thickened to the axis of the crack in order to 

most accurately determine the shape and dimensions of the 

plastic zone. Near the axis of the crack, the elements had a 

size (side length) of 0.1 mm. During loading, the external 

load increased monotonically from zero to 
 by 100 time 

steps. At loading levels 0,5Y  =   in the vicinity of 

the crack tip, large plastic deformations occurred, so the 

problem was solved on the basis of the general equations 

of mechanics of a deformable solid body in the current 

Lagrangian formulation, taking into account the physical 

and geometric nonlinearity [40]. The stress-strain state was 

calculated using the MSC.Marc 2018 finite element 

analysis package [41] with the “largestrain” option. The 

calculated plastic zones in a homogeneous plate under 

plane deformation are shown in Figure 8.  

The distribution of equivalent plastic strains 2 3p p p

ij ij  =  ( p

ij  are components of the plastic 

strain tensor) at different levels of loading is given. 

 

  

  

 
Fig.8. Shapes of plastic zones in a homogeneous plate under plane deformation conditions at 

different acting loads  : 0,76 (а); 0,86 (b); 0,91 (c); 0,93 (d) p . 

 

 
Fig. 7. Scheme of fixing and loading 

of the plate with a simple shear. 

а b 

c d 
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Figure 9 shows the distribution of equivalent plastic deformations in a bimetallic plate under plane 

deformation conditions at different loading levels . 

 

 

  

  

 
Fig. 9. Forms of plastic zones in a bimetallic plate under plane deformation and different levels of 

loading : 0,785 (а), 0,885 (b), 0,938 (c), 0,94 (d). 

 

The contour lines in figures 8, 9 are limited by the range of values 4 210 10− −  for a more detailed 

drawing of the distribution of equivalent plastic strain p . The crack is located to the left of the plastic 

zone, the region of plastic deformations exceeding 0.01 is located directly in front of the crack tip. 

The plastic zone stretches in the direction of the crack axis and becomes flatter as the load increases. 

The plastic zone increases with a further increase in the load and at 0,94 =  reaches the right edge 

of the plate. 

The table shows the lengthsb  and width a  of the plastic zone with simple shear under conditions 

of plane deformation and various loads for a plate made of homogeneous and bimetallic materials, 

obtained as a result of a numerical solution. The width a  was defined as the maximum width of the 

plastic zone along the crack extension; the length of this zone b  is shown in Figure 3b. The results 

show that the crack width in a bimetallic plate is approximately 2 times smaller than in a plate made 

of a homogeneous material. 

 

Table. Dimensions of the plastic zone established in numerical calculations for simple shear under 

plane deformation conditions for plates made of homogeneous and bimetallic material 

Homogeneous plate Bimetal plate 

  b , mm a , mm   b , mm a , mm 

0,76 4,90 1,43 0,785 5,30 0,72 

0,86 8,65 1,81 0,885 9,30 0,97 

0,91 13,00 1,95 0,938 16,10 1,04 

0,93 18,80 1,95 0,940 20,00 1,04 

 

а b 

c d 
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The results of the numerical calculation reflect the real shape of the plastic zone for a plate made 

of a homogeneous material in the form of a narrow elongated symmetrical "jug" with a "neck" in the 

vicinity of the crack tip, and for a bimetallic plate, the plastic zone of a similar shape is one-sided and 

is located in the area corresponding to the material 

with a lower limit yield stress. However, they are 

neither in shape nor in size similar to the plastic 

zones shown in Figure 4 in the case of the plain 

strain state for the plate made of a homogeneous 

bimetallic material. For example, for a 

homogeneous plate at 0,91 =  from (9), (10) we 

obtain: 1,249a =  mm, 4,273b =  mm; numerical 

calculation gives the values: 1,945a =  mm, 

13,00b =  mm. As can be seen, the length of the 

plastic zone b  is three times greater than the value 

given by formula (9). In this regard, in [42, 43] to 

refine the expression for the width of the pre-

fracture zone, the insertion of a correction factor

m into relation (8) is substantiated. To determine 

the value of this coefficient, it is necessary to use 

directly the data of either a numerical or laboratory 

experiment. Figure 10 shows the dependence of the width of the plastic zone a  on the load  . One 

of them is calculated by formula (10) (curve 1), the other one is plotted according to numerical 

calculation data. Constraint (5) under conditions of small-scale plastic flow is fulfilled at loads 

0,3  . From a comparison of analytical values with numerical values in this range of loads, we 

obtain an approximate value of the correction factor 2m  . 

 

6. The problem of extension a reinforcing layer from a metal composite 

 

Let us study the process of delamination of the reinforcement from the matrix when the 

reinforcement is pulled out of the composite. In [44, 45], when studying the dynamic processes of 

deep drawing (deepening) of metal composites with discrete fibers under dynamic pulse action on 

reinforcement, a mathematical model of the motion of a rigid plastic rod in a medium with resistance 

was realized. Let us consider a similar problem in a quasi-static setting. The scheme of loading a 

composite plate is shown in Figure 11. The plane strain conditions are assumed to be satisfied. Due 

to the symmetry of the computational domain (dash-dotted line), its half is modeled. Here: plate 

length 50L =  mm; thickness 10 mm; binder width (aluminum – A) 25H =  mm; reinforcement width 

(steel – S) 5h =  mm. There is a section of 

delamination – an edge crack with a length of 

0 5l =  mm. A distributed load is applied to the 

end of the reinforcing layer (fiber) F . For the 

"matrix-reinforcement" system, an ideal 

elastoplastic model with the following 

characteristics is considered: 

– for steel, Young's modulus 200Е =  GPa, 

Poisson's ratio 0,25 = , uniaxial tensile yield 

strength 400Y =  MPa; 

– for aluminum Young's modulus

70Е =  GPa, Poisson's ratio 0,34 = , uniaxial 

tensile yield strength 100Y =  MPa.  

 

Fig.10. Comparison of the 

dependence on the load   of the size of 

the width of the plastic zone a  , obtained 

by formula (10) (curve 1) and 

established numerically (2). 

 

Fig.11. Scheme of fixing and loading of a 

composite plate. 
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At the initial moment of stretching of the reinforcing layer, a stress state of simple shear arises – 

the crack starts in the II mode of destruction, therefore, the critical loads at small-scale yield can be 

found using formulas (15)–(18), and in the case of the developed plastic flow, the critical load is 

determined by the finite element method. 

The computational domain was covered with a non-uniform mesh of 150,000 nodal rectangular 

elements with a quadratic approximation of displacements and a complete stress integration scheme. 

The mesh was refined from the outer boundaries to the crack axis in a ratio of 10:1. During loading, 

the external load F S = , where S  — is the cross-sectional area of the reinforcing layer, increased 

monotonically linearly from zero to 400Y =  MPa, using an adaptive time step. At loading levels 

0,4Y  =   in the vicinity of the crack tip, large plastic deformations occur; therefore, the 

problem was solved on the basis of the general equations of mechanics of a deformable solid body in 

the current Lagrangian formulation, taking into account the physical and geometric nonlinearity [40]. 

The stress-strain state was calculated using the MSC.Marc 2018 finite element analysis package [41]. 

The plastic zones plotted according to the calculation data along the interface on the side of the 

binder are shown in Figure 12. The distribution of equivalent plastic strain p  at different levels of 

loading is given. As before, the contour lines limit the range 4 210 10− −  for their more detailed 

drawing. The plastic zone stretches in the direction of the crack axis and forms a “hump” as the load 

increases (Fig. 12d). 

 

  

  

 
Fig. 12. Forms of plastic zones in the binder at the interface between materials at different levels of 

external load : 0,685 (а); 0,785 (b); 0,885 (c); 0,968 (d). 

 

The algorithm for numerically finding the critical load according to the necessary and sufficient 

criterion was as follows. Some value of the plasticity parameter was set, for example, 
II 40 = , which 

corresponded to 12% plastic strain. At each load step  as a result of the analysis of the isolines of 

the plastic zones, by interpolation over the neighboring nodes of the finite element mesh, the 

maximum width of the plastic zone ( )a a =  and the transverse displacement ( )u u =  at the point 

located at a distance ( )a a =  from the crack tip were determined (see point K in Fig. 3b). Further, 

а b 

c d 
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according to formula (8), the critical value of the share was calculated ( )1 0 II 0a a     = − = . There 

were two successive steps in the load, on one of them, the inequality u    was fulfilled, and on the 

other, the inequality u    was fulfilled. By interpolation in time, the load * , was determined at 

which the transverse displacement u  became equal to the critical shear  . The obtained value *  

was the critical load according to the sufficient criterion (1), (2).  

The critical load according to the required criterion (1) was established at such a time step when 

the finite elements closest to the crack tip in the interval d  completely passed into the plastic state. 

The numerical calculation showed good agreement with the analytical model at loading levels up to 

0.26. A significant discrepancy between the dimensions of the plasticity zone was observed under 

conditions of full-scale plastic flow, corresponding to the solution of the problem in a geometrically 

nonlinear formulation in the theory of small deformations. 

 

7. Conclusion 

 

The initiation of a transverse shear crack (fracture mode II) in elastoplastic materials with ultimate 

strain is considered. The class of materials under study includes, for example, low alloy steels used 

in structures operating at temperatures below the cold brittleness threshold. The process of destruction 

of such a material is described in terms of the modified Leonov–Panasyuk–Dugdale model, which 

uses an additional parameter—the width of the plasticity zone (the width of the pre-fracture zone). A 

two-parameter quasi-brittle fracture criterion for type II cracks in an elastoplastic material is 

formulated under small-scale yield conditions in the presence of a singular feature of the stress field 

in the vicinity of the crack tip, while its deformation part refers to the tip of the original crack, and 

the force part (written for shear stresses with allowance for averaging) — to the top of the model 

crack. The lengths of the original and model cracks differ by the length of the pre-fracture zone. A 

consistent analysis of the applicability of the proposed strength criterion in determining the breaking 

loads for bodies containing transverse shear cracks is carried out. 

Diagrams of quasi-brittle fracture of a plate with an edge transverse shear crack are plotted for the 

case of monotonic loading. These diagrams consist of two curves dividing the plane in the “crack 

length–stress” coordinates into three successive subareas, in which, respectively, there are no 

fractures, damage accumulates in the pre-fracture zone, and the specimen is divided into parts. The 

analysis of the parameters included in the proposed model of quasi-brittle fracture is carried out, and 

the conclusion is made about the expediency of their selection according to the ( − )–diagram of 

simple shear and the critical stress intensity factor
IIcK .  

Expressions are obtained (see 15–18), relating the critical load and the length of the pre-fracture 

zone. They can be useful for predicting the critical failure load and estimating the length of the pre-

fracture zone when loading specimens in mode II in structured materials, since the following 

quantities are used: d  is the characteristic linear size of the material structure; 
Y  and 

( )II 1 0 0   = −  are the parameters ( − )-diagram of simple shear. All three parameters are found 

as a result of a laboratory experiment. The approximation of the localized plastic flow turns out to be 

insufficient at such load levels at which plastic zones appear that are comparable with the 

characteristic dimensions of the problem. The analytical model has a number of limitations that allow 

its applicability only in the case of small-scale plasticity b l  and a small yield plateau length

II 5,027  , as follows from (17). The last inequality is satisfied, for example, for heat-resistant steels. 

Ultimate loads are found numerically for quasi-viscous and viscous types of fracture. Computer 

simulation of the propagation of plasticity zones from the tip of a type II crack during the pulling of 

a reinforcing layer from a metal composite was carried out using the finite element method. An 

estimate of the dimensions of the plastic zone in the vicinity of the crack tip is obtained. The 

difference between the numerical model and the analytical one lies in the fact that, on its basis, such 

materials are studied, the characteristics of which correspond to the deformation regimes at full-scale 

yield. Large deformations occur in the vicinity of the crack tip, so the problem is solved in the current 
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Lagrangian formulation, taking into account physical and geometric nonlinearities, based on the 

general equations of mechanics of a deformable solid body. It has been found that the results of 

numerical experiments are in good agreement with the results of calculations based on the analytical 

model of fracture materials with a structure under transverse shear in the small-scale yield regime. 
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