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The paper presents a study of the effect of the interparticle dipole-dipole interaction on the static, 

thermodynamic, and magnetic properties of the ensemble of stationary superparamagnetic particles in the 

external magnetic field. The relaxation of the magnetic moment of the model ferroparticles occurred by the 

Néel mechanism. The directions of the easy axes of all particles were assumed to be parallel to each other, 

but at the angle to the direction of the external magnetic field. The direction of the easy axes was described 

using the polar and azimuth angles. The potential energy of the system includes a single-particle dipole-

axial interaction, a single-particle dipole-field interaction, and long-range interparticle dipole-dipole 

correlations. In the system, two variants of the distribution of ferroparticles over the volume of the container 

are considered: at the nodes of a simple cubic lattice and randomly. The described model is studied 

theoretically by expanding the Helmholtz free energy into a classical virial series up to the second virial 

coefficient. Using the new theory, contribution of dipole-dipole interactions in the changes in the magnetic 

susceptibility, magnetization, and heat capacity of the system is estimated, and the results are represented 

graphically. The important information necessary to the development and synthesis of new magnetic 

materials with controlled properties is provided. 
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1. Introduction 

 

Smart materials are special materials having one or more properties that can be significantly changed by an 

external influence, for example, by a magnetic field. Such materials include magnetic composites, which are 

obtained by embedding magnetic nanoparticles into a liquid or polymer matrix. Examples of such composites 

are ferrofluids, ferrogels, magnetic elastomers, magnetic emulsions and various biocompatible magnetic 

fillers. Today, such materials are frequently used in the medicine because they actively react to applied 

magnetic fields. For instance, they are an essential tool for magnetic hyperthermia, in which the 

remagnetization of magnetic nanoparticles in an alternating magnetic field leads to the death of tumor cells. 

The response of magnetic composites to an applied magnetic field in nanoscale particles is determined by two 

main physical mechanisms of orientation relaxation of the magnetic moment: Brownian rotation of particles 

with fixed magnetic moments and superparamagnetic Néel rotation of magnetic moments inside particles due 

to thermal fluctuations. In ensembles of nanoparticles placed in certain liquid carriers, known as ferrofluids, 

both mechanisms take place. The introduction of nanoparticles in a polymer matrix or biological tissues leads 

to the loss of both translational and orientation freedom. In this case, superparamagnetic Néel relaxation 

becomes the main mechanism determining the magnetic properties of ensembles of such stationary 

nanoparticles.  

 Today, there are many well-established synthesis methods that make it possible to produce a magnetic 

composite with a variety of nano- and microscopic textures. The different distribution of magnetic 

nanoparticles inside the sample leads to a significant change in its bulk properties. In addition, interparticle 

dipole-dipole interactions have a strong effect on the macroproperties of the system, and this manifests itself 

differently in liquid or polymer-based composites. Thus, strong interparticle dipole-dipole interactions in a 

ferrofluid lead to aggregation [1-4], whereas in a system of stationary magnetic nanoparticles, interparticle 

interactions can only be the reason for structuring the magnetic moments of nanoparticles, since the particles 

themselves remain stationary [5-7]. The effect of dipole-dipole interactions on the bulk properties of ferrofluids 

has been well studied theoretically [8-12], experimentally [4, 13-15], and using computer modeling methods 

[4, 9-12, 16]. However, the development of a theory that takes into account dipole-dipole interactions in a 

system of stationary superparamagnetic nanoparticles still remains a difficult task. In recent works, the 

magnetic response of a system of stationary interacting single-domain nanoparticles distributed randomly or 
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placed at the nodes of a simple cubic lattice inside an implicit solid matrix has been studied using statistical-

mechanical theory and computer modeling. In [17], superparamagnetic particles with uniaxial magnetic 

anisotropy were considered. The relaxation of the magnetic moments of the particles occurred by the Néel 

mechanism. The easy axes were arranged according to certain textures: aligned parallel or perpendicular to the 

external magnetic field, or occupied a random place. It has been established that the initial magnetic 

susceptibility of magnetic materials with different textures strongly depends on the magnetic anisotropy energy 

of the crystal, measured in units of thermal energy. All cases of interaction between nanoparticles led to an 

increase in initial susceptibility, but in a parallel texture it increased much more than in a perpendicular or 

random texture. It was assumed in [7] that nanoparticles are embedded at the nodes of a simple cubic lattice 

(Simple Cubic Lattice of Ferroparticles - SCLF) and the relaxation of the magnetic moments of nanoparticles 

occurs by the Brownian mechanism. The particles did not have their own magnetic anisotropy, but could rotate 

in the lattice nodes under the influence of an external magnetic field and as a result of interparticle dipole 

interactions. The magnetic properties of SCLF were compared with the magnetic properties of the ferrofluid 

modeled by the system of Dipole Hard Spheres (DHS). It has been established that the magnetizations of DHS 

and SCLF are the same for weak dipole-dipole interactions. With strong and moderate dipole coupling and a 

weak magnetic field, the DHS system is magnetized higher than the SCLF system, while with stronger fields, 

the opposite trend is observed. The article [7] discusses the reasons for such behavior.  

Works [7, 17] demonstrate how different distributions of magnetic nanoparticles inside a sample can change 

its macroproperties. Nevertheless, the theory of dipole-dipole interactions in a system of stationary 

superparamagnetic particles remains incomplete. Unlike previous works, where only parallel and 

perpendicular cases of the arrangement of the easy axes relative to the external magnetic field were considered, 

in this work, using a statistical-mechanical approach, the thermodynamic and magnetic properties of an 

ensemble of the stationary monodisperse superparamagnetic particles located randomly at the nodes of a 

simple cubic lattice are analyzed, and their easy axes are aligned parallel to each other and located at an 

arbitrary angle to the external magnetic field. 

 

2. Model 

 

The sample under study is a monodisperse system of N  fixed superparamagnetic spherical particles, which 

are affected by an external magnetic field. All particles have the same diameter of the magnetic core x  and 

magnetic moment m sm v M= , where sM  — is the bulk saturation magnetization of the magnetic material, and 
3  6mv x=  — is the volume of the magnetic core. The magnetic moment and the radius vector of the i - th 

particle are, respectively, ii im=m Ω  and ˆ
i i ir=r r , where ( )sin cos , sin sin , cosi i i i i i    =Ω  and 

( )ˆ sin cos ,sin sin ,cosi i i i i i    =r  are the unit vectors. Each magnetic moment tends to be parallel or 

antiparallel to the easy axis, which determines two main positions. The direction of the applied magnetic field 

H  is parallel to the Oz  axis, that is, ( )1  0,0,H H= =H h . The sample has the shape of a cylinder, strongly 

elongated along the Oz  axis. This form is used in order to avoid the occurrence of demagnetizing fields. It is 

assumed that all simple axes are parallel to each other and can be described by a single vector n , which is 

determined by the angles   and  . The angle   is the angle between the vectors H  and n : ( ), = H n . 

The angle   is the polar angle in the Oxy  plane. The coordinate system, the direction of the external magnetic 

field, and the easy axis are illustrated in (Fig. 1.). 

 

 

Fig. 1. The coordinate system; the Oz  axis is parallel to 

the direction of the applied external magnetic field H . 
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The Néel energy is given as a function depending on the angle between vector n  and the magnetic moment 

im :  

 

( ) ( )
2

ˆ ,N mU i Kv= − Ω ni
 

 

where n̂  — is the unit vector, and K  — is the magnetic crystallographic anisotropy constant (characteristic 

of the material). 

The Zeeman energy describes the interaction between the magnetic moment im  and the homogeneous 

external magnetic field H  

 

( ) ( )0 0 cosω ,m i iU i mH = −  = −m H  

 

taking into account the strength and directivity of the applied magnetic field H ; 0  — – is the magnetic 

permeability of the medium. 

The paired dipole-dipole interaction of the i - th and j - th particles is found using the anisotropic potential 

dU : 

 

 ( ) ( ) ( )( )
2

0

3
ˆ ˆ  3 ,

4
d i j i ij j ij

ij

m
U ij

r




 =  −  
 

rΩrΩ Ω Ω  

 

where ˆ
ij ij ij j ir= = −r r r r  denotes the vector with the length ij ijr = r , connecting centers of the i - th and j - th 

particles. 

The total potential energy, normalized to thermal energy (Boltzmann constant) 1

Bk T  −= , is defined in 

the following form: 

 

 ( ) ( ) ( )
2

1 1 1

ˆ ˆ
N N N

d i

j i i i

U ijU   
 = = =

−  − =   Ω Ωh n
i . 

 

Here: 0mH =  — is the Langevin parameter; mv K =  — is the dimensionless anisotropy parameter;  

ĥ  — is the unit vector. 

 

  
Fig. 2. A monodisperse system of stationary single-domain superparamagnetic ferroparticles in the 

external magnetic field H : the distribution of the particles by volume is assumed at the nodes of a 

simple cubic lattice (a) or randomly (b). 

 

The location of the particle at the point in the volume is described using the probability function, defined 

through the delta function: ( ) ( )( )0

k k kp = −r r r . Two types of particle volume distribution will be considered: 

at the nodes of the simple cubic lattice and randomly. Both textures of the particle distribution in the sample 

are shown in (Fig. 2). 

For the more detailed description of the model and its magnetic susceptibility, we will use the standard 

parameter - the initial Langevin susceptibility: 

a b H H
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k T

 
 =   

 

where   — is the numerical concentration of the ferrocarticles in the sample. 

 

3. Expansion of the Helmholtz free energy for an ensemble of stationary particles 

 

To consider the magnetic and thermodynamic properties of the system, we will use a classical technique 

for a similar problem — the decomposition of the Helmholtz free energy F  Let us write down the definition 

of F  in terms of the configuration integral Z , which describes all deviations of the system from the ideal 

state: 

 

 ( )ln .F Z = −  

 

In order to establish the contribution of the dipole-dipole interactions to the change in the parameters of the 

system, we represent F  in the form of two terms: 

 

     .idF F F= +  

 

The first term    idF  corresponds to an ideal thermodynamic system of non-interacting superparamagnetic 

nanoparticles in an applied magnetic field. The second term  F  shows the contribution of dipole-dipole 

interactions to the Helmholtz free energy. 

For convenience, we introduce the following notation: SCLFF  and RANDOMF  — the contribution of 

dipole-dipole interactions to the Helmholtz free energy for the case of a cubic lattice and a random distribution, 

respectively.  

 

3.1. Ideal superparamagnetic system 

 

The Helmholtz free energy for an ideal system of superparamagnetic non-interacting particles in the applied 

magnetic field — idF , will take the following form: 

 

 ( )ln ,id idF Z = −  

 ( ) ( )
1

2

1

1

ˆexp exp cosω  
N

k i k k

N

d

k i

iZ p d d 
= =

 
  +    

 
=  r r ΩnΩ . (1) 

 

Here kdr  and kdΩ  are averaging over all possible locations and directions of the magnetic moment of the 

k - th particle, respectively:  

 

 2 ,in  sk k k k kkd drr d d  =r  

 
1

  sin ξ
4

k k k k kd dr d d 


=Ω ; 

 

1Ω  — is the vector describing the direction of the magnetic moment. 

As it can be seen from the definition (1), idZ  depends only on the single–particle interaction types: magnetic 

moment - magnetic field and magnetic moment - easy axis. This ideal case completely neglects the interparticle 

dipole-dipole interactions, which depend on the location of the particles in the sample volume. Taking into 

account the normalization rule for both the lattice and random distribution: 

 

 ( ) 1,k kp d = r r  
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it can be concluded that all the particles are equivalent to each other when integrating. This allows us to rewrite 

the expression for idZ  as: 

 

 ( )( )2

1 1 1
ˆexp cosω    Nid dZ   = +   ΩnΩ . 

 

The result can be found numerically for the fixed direction of the vector 1n̂  and each set of the parameters   

and  . It should be noted that the configuration integral in the Helmholtz free energy for the ideal system will 

not be conditioned by the temperature and concentration of 

the particles: 

 

        ( )( )2

1 1 1
ˆln exp cos  idF

d
N


   = − +   Ω Ωn .     (2) 

 

For the ideal case in the zero magnetic field, there is no 

dependence of the integral on the angle θ . Also, for any 

parameters there is no dependence on the angle φ . The 

system is completely isotropic when rotating in the Oxy  

plane.  

Fig. 3 shows that with an increase in the strength of the 

external magnetic field a minimum appears at the point 2  

Parallel configurations of the energy curves, in which the 

anisotropy axis is located along the magnetic field vector     (

θ 0=  and θ π= ), show faster growth of free energy than in 

the perpendicular configuration ( 2 = ). 

 

 

3.2. Dipole-dipole interaction 

 

 Consider the contribution of the dipole-dipole interactions to the Helmholtz free energy 

 

 ln ,
id

Z
F

Z


 
 = −  

 
 

 ( ) ( ) ( )
1

2

1

1 1

ˆexp ex .ω  
1

p cos
N N N

k d i

d

k k

ji iki id

Z
U

Z Z
p ij d d 

 == =

 
  − + +    

 
=    Ω Ωr n r  

 

Rewrite the last expression in the more compact form:  

 

 ( ) ( )
1 1

1 Ψ ,
N N

k ij k k

k j iid

Z
p f d d

Z =  =

= +  r r  

 

where ( )( )( )exp 1ij df U ij= − −  — is the Mayer function, and Ψkd  — is the Boltzmann averaging over the 

orientation of the magnetic moment of the k - th nanoparticle: 

 

 
( )

( )

2

2

1 1 1

ˆexp cosω
Ψ .

ˆexp cosω

k k k

k

d
d

d

 

 
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 

=
 + 
 

Ω Ω

Ω Ω

n

n
 

 

Summarizing all the available data, it is possible to obtain the final form of the configuration part of the 

Helmholtz free energy and write the final expression for the simple cubic lattice: 

 

 
Fig. 3. Helmholtz free energy as the 

function depending on the angle 

( ), = H n  for the ideal system of 

superparamagnetic particles with 

,25 1L = , 10 =  and different 

value of the parameter  : 0 (curve 1); 

1 (2); 5 (3); 20 (4). 
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 ( )0

1

2

1
= ,

2

SCLF N

j

j

F
f

N



=


−   (3) 

 

where ( ) ( ) ( )0

1 1 1 1j j j jf p d p f d=  r r r r  is the Mayer function for the 1-th and j -th nanoparticles located in the 

lattice and (0)

1 jf  — is the Boltzmann averaging over the orientation of the magnetic moment of the 1-th and 

j -th nanoparticles: 

 

 (0) (0)

1 1 1 .j j jf f d d=    

 

The definition of F  from (3) is valid for regular types of nanoparticle distribution in the system volume, 

such as SCLF or other lattices. For random placement of magnetic nanoparticles in the sample volume, it is 

necessary to average (3) over all possible random configurations. This means that, in the limit, each j - th 

particle in the sum (3) can occupy any position in the sample volume, except of the position of the 1-th particle: 

 

 
1

1 12 12 12 12

2

1
= ,

222
j

RANDO

j

M N
jdr N

f f dr f dr
N V

F

V

 

=

− = −


= −    (4) 

 

where N V =  — is the density of the distribution of the particles by the volume. 

Decompose the Mayer function ijf  into a series up to terms with the second order of the dipole energy dU  

inclusively: 

 

 ( ) ( ) ( )3

12

21
12 12 O

2!
d ddf U UU + −  += −  , 

 ( ) ( ) ( ) ( )
20 3

1

1
1 1 O

2!
.d dj df U U Uj j = − + −  +   

 

For the cubic lattice, the configurational part of the Helmholtz free energy (3) can be written as: 

 

 ( )1 2

1
,

2

SCLFF
b b

N


+


−  

where  

 ( ) ( )( )21

2

22

.
1

1 ,   1
2!

N

j

N

d d

j

b U j b U j 
==

− = −=   

 

Averaging the coefficients 1b  and 2b  by the direction of the magnetic moment, we obtain the final expression 

for the SCLFF  in the logarithmic form: 

 

  2 2 2ln 1 0,5 0,5 0,5L z

SCLF

x y

F

N
Q Q Q


 +


 − + −= −    

 ( ) ( ) ( ) 2 2 2 2 2 2 20,5 0,381 0,098 0,282 .L xx yy zz xx yy xx zz yy zz xy xz yzQ Q Q Q Q Q Q Q Q Q Q Q  + + + + + + − + +
   (5) 

 

Similarly, we write the configuration part of the free energy Helmholtz for the random distribution (4): 
 

 ( )1 2

ρ
,

2

RANDOMF
b b

N


− +  

 

where 

http://dx.doi.org/10.7242/1999-6691/2021.14.3.22


S.A. Sokolsky Computational Continuum Mechanics. 2021. Vol. 14. No. 3. pp. 264-277 DOI: 10.7242/1999-6691/2021.14.3.22 

270 

 ( ) ( )( )21

2

12 12.
1

12 ,   12
2!

d db U d b U d − = −=  r r  

Averaging the coefficients 1b  and 2b  by the direction of the magnetic moment, we obtain the final expression 

for the RANDOMF  in the logarithmic form: 

 

  2 2 2ln 1 0,5 0,5 0,5
A

L

R ND

y

O

z x

M

Q Q
F

Q
N


 +


 − + −= −     

 ( ) ( ) 2 2 2 2 2 2 ,0,1 λ 2 3L xx yy zz xy xz yz xx yy xx zz yy zzQ Q Q Q Q Q Q Q Q Q Q Q  + + + + + + + + +
 

 (6) 

 

where ( ) ( )2 3

0λ   4m d  =  — is the dimensionless parameter describing the intensity of the magnetic 

interaction of two particles in units of the thermal energy. 

To simplify the final form of the record, the following auxiliary functions xQ , yQ , zQ , xyQ , xzQ , yzQ , xxQ

, yyQ  and zzQ  were used, which have the form: 

 

 ( ) 1 1 1
ˆ, , sinω ,cosξ ΨxQ d  = n  

 ( ) 1 1 1
ˆ, , sinω sinξ Ψ ,yQ d  = n  

 ( ) 1 1
ˆ, , cosω Ψ ,zQ d  = n  

 ( ) 2

1 1 1 1
ˆ, , sin ω sinξ cosξ Ψ ,xyQ d  = n  

 ( ) 1 1 1 1
ˆ, , sinω cosω cosξ Ψ ,xzQ d  = n  

 ( ) 1 1 1 1
ˆ, , sinω cosω sinξ Ψ ,zyQ d  = n  

 ( ) 2 2

1 1 1
ˆ     , , sin ω cos ξ Ψ ,    xxQ d  = n  

 ( ) 2 2

1 1 1
ˆ, , sin ω sin ξ Ψ ,  yyQ d  = n  

 ( ) 2

1 1
ˆ, , cos ω Ψ .zzQ d  = n  

 

3.3. Comparison of the results 

 

 Note that the first terms on the right side of the expressions (5) and (6), containing the magnetic energy 

of the interaction of the particles of the first order, coincide in form. Theoretical consideration of the differences 

in the structures of the spatial arrangement of the particles is possible only with an increase in the order of this 

energy. Expression (5) contains the full square of the Langevin's susceptibility 2

L , while expression (6) 

includes the product λL . It is impossible to find unambiguously the parameter λ by setting only the value of 

the Langevin's susceptibility. Therefore, for definiteness, we choose the value λ based on the condition: 
2λL L = , that is, we assume that λ L= . Such restriction is introduced in order to compare two different 

expressions of the free energy corresponding to the two different models of particle placement in a sample on 

a particular example.  

The ratio λ L=  is valid for the system with the fixed volume concentration of particles 0 0,125v = , which 

corresponds to the sample with a moderate concentration and should not lead to any unexpected effects. Let 

us trace the behavior of F  for the lattice and the random distribution by fixing 1,25L = , which will allow 

us to consider a wide range of anisotropy parameters. Let us put 251, =  and 10 = .  

When analyzing the graphs of the F  for the lattice as the function of the azimuth angle θ  (Fig. 4), we can 

notice that for all parameters there are always two minima. There is also a clear dependence on the angle φ. In 

this case, the graph for π 3 =  coincides with the graph for π 6 = , and the graph for π 2 =  — coincides 

with the graph 0 = . As a result, additional cases π 3 =  and π 2 =  are not shown in the figure. 
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Fig. 4. The contribution of the dipole-dipole interactions: F  as a function, which depends on the angle 

( ), =  H n , for the cubic lattice with , 21  5L = , 10 =  and different values of the external magnetic field: 

 0 =  (a); 1  =  (b);  5 =  (c);  20 =  (d). 

 

In the case of a zero magnetic field (see Fig. 4a) for 0 = , three maxima are located at the same level. The 

physical reason for the two minima at the points θ π 4=  and atθ 3π 4=  for 0 =  is that at these angle values, 

the dipoles in the head-tail orientation are located diagonally across the spatial lattice, which means that the 

distance between the dipoles will be maximum. This leads to a decrease in the energy of their interaction. As 

the angle   increases from 0  to π 4 , the dipoles move away from each other, and as a result, the average 

maximum shifts down relative to right and left maxima. (Fig.4b) shows that the appearance of an external 

magnetic field of low intensity noticeably increases the frequency of dipole-dipole interactions only for parallel 

configurations at θ 0=  and θ π= . The maximum at the point θ π 2=  practically does not move upwards, but 

at the same time, two minima are shifted to this point. All the features noted in the previous case, appear more 

pronounced with an increase in the external magnetic field (see Fig. 4c). For strong magnetic fields shown in 

(Fig. 4d), corresponding to the state of magnetic saturation of the system, the sensitivity to the magnitude of 

the angle 𝜑 disappears, and there is also a vertical upward shift of the average local maximum and two minima, 

which was not observed in previous cases. 

Considering the graphs F  for the random distribution as a function of the azimuth angle θ  (Fig. 5), we 

can come to the following conclusions: there is no dependence on the angle   for any parameters F . The 

system is completely isotropic when rotating in the Oxy  plane. As in the ideal case, there is no dependence 

on the angle θ in a zero magnetic field. With an increase in the strength of the external magnetic field, two 

minima appear, which approach to θ π 2=  with an increase in the parameter  . The parallel configurations 

in which the anisotropy axis is located along the magnetic field vector, that is θ 0=  and θ π= , show a faster 

growth of F , than the perpendicular configuration θ π 2= . With the strengthening of the field, there is not 
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only a vertical upward movement of the graph, but also the increase in the height of its deflection. In the strong 

magnetic field (  20 = ), in the state of magnetic saturation of the system, there is a vertical shift of the average 

local maximum and two minima upward, which is missing for 1    =  and 5 = , and the contribution of dipole-

dipole interactions to the free energy for the parallel configurations practically does not change in comparison 

with the state in the field 5 = . 

Summarizing the results obtained for the cubic lattice and random distribution, we can draw the following 

conclusions:  

– the state of magnetic saturation does not depend on the angle  ; the difference between the two types of the 

sample texture is depending on the angle 𝜑 in all cases, except for the state of the magnetic saturation; the 

random distribution is completely isotropic when rotated in the Oxy  plane;  

– in a zero magnetic field F  for the cubic lattice depends on the angle  , while there is no such dependence 

for the random distribution; 

– for both textures, the graphs have similar character with two minima and three maxima for parallel (θ π 4=  

и θ π= ) and perpendicular (θ π 2= )vectors. 

 

4. Results 

 

4.1. Initial magnetic susceptibility 

 

The initial magnetic susceptibility was calculated using the analytical expression of the Helmholtz free 

energy: 
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where id  means the initial magnetic susceptibility of the ideal system without dipole-dipole interaction: 
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Fig. 6 shows graphs of the initial magnetic 

susceptibility as a function depending on the 

angle θ , for the lattice — SCLF , and the random 

structure — random . As we can see, 

susceptibility reaches its minimum in the case of 

the perpendicular position of the easy axes 

relative to the external magnetic field, that is, 

when θ π 2= . Such behavior is observed for 

both cubic and random distribution of the 

ferroparticles. But when their positions change 

from perpendicular to parallel, changes in the 

behavior of the graphs become noticeable: for 

random distribution, the growth of the initial 

magnetic susceptibility occurs more sharply, 

while for the cubic lattice it is smooth.  

 

 
Fig. 5. The contribution of the dipole-dipole interactions: 

F  as a function depending on the angle ( ), = H n  

for the random distribution with 2,1  5L = , 10 =  

and different values of the external magnetic field  : 

0 (curve 1); 1 (2); 5 (3); 20 (4). 
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Fig. 6. The initial magnetic susceptibility as a function depending on the angle ( ), , = H n  for the 

cubic lattice (a) and random distribution (b) for the different values of the anisotropy parameter  :   2 

(curve 1); 5 (2); 10 (3). 

 

4.2. Static magnetization 

 

The analytical form of scalar magnetization can be similarly obtained through the free Helmholtz energy: 
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The expression for F  in the magnetization formula can be simplified by discarding some of the terms. Thus, 

in relations (3) and (4), only the functions zQ , xxQ , yyQ  and zzQ , should be taken into account, since only they 

will give a non-zero contribution in the external magnetic field: 
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when the remaining terms xQ , yQ , xyQ , xzQ  and yzQ  will be zero at 0 = . 

 (Fig. 7) shows graphs of static magnetization as a function depending on the angle θ , for the lattice (

SCLFM ) and a random structure ( randomM ), respectively. As can be seen, in the weak field ( 1 = ) the 

contribution of dipole-dipole interactions is especially noticeable.  

  With an increase in the field strength ( 5  ), the magnetic moments are aligned along the field and no longer 

show such a pronounced influence on each other. 
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Fig. 7. The static magnetization M  as a function depending on the angle ( ), = H n , for the cubic 

lattice (a) and the random distribution (b) with ,2  51L = , 10 =  and different values of the external 

magnetic field  : 1 (curve 1); 5 (3) and 20 (5); dotted curves 2, 4, 6 correspond to the ideal system. 

 

4.3. Heat capacity 

 

The formula for the heat capacity expressed in terms of the configuration integral looks as follows: 

 

 
( )2
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V B

Z
С k T

T T

  
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  

. 

 

 

  
Fig. 8. The heat capacity VС  as a function depending on the anisotropy parameter ,  for the cubic 

lattice and random distribution with 1  ,25L = , θ 0=  and various values of the external magnetic 

field  : 0 (a), 1 (b), 5 (c), 20 (d). 

a b 

c d 
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Let us write it down as: 
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Looking at formulas (1), (4) and (5), we can conclude that ( )ln Z F N  , therefore, when considering the 

heat capacity graphs, we use the construction ( )V BС Nk .  

(Fig. 8) and (Fig. 9) show graphs of the heat capacity as a function of the anisotropy parameter   for the cubic 

lattice and the random distribution at different values of the external magnetic field  , in parallel (θ 0= ) and 

perpendicular (θ π 2= ) positions of the easy axes relative to the external magnetic field. As can be seen from 

the graphs, for a strong field ( 20 = ) the proposed approach gives results that almost coincide with the ideal 

case, while with a weak field or its complete absence, the contribution of the dipole-dipole interactions 

becomes much more noticeable. 

 

 

 
Рис. 9. The heat capacity VС  as a function depending on the anisotropy parameter ,  for the cubic 

lattice and random distribution with ,2  51L = , θ π 2=  and various values of the external 

magnetic field  : 0 (a), 1 (b), 5 (c), 20 (d). 

 

5. Conclusion 

 

In contrast to previous works devoted to this topic, where only the perpendicular and parallel cases of the 

mutual arrangement of the easy axes and the external magnetic field were discussed, in this paper, using the 

statistical-mechanical approach, a more general case of an arbitrary angle is considered. The previously studied 

special cases follow from this theory, which confirms its generality. In addition, a comparative analysis of the 

behavior of the system for the cubic lattice and the random configurations was conducted. Using the 

generalized theory, the analysis of the static, magnetic, and thermodynamic properties of a system of stationary 

superparamagnetic particles in an external magnetic field is carried out for an arbitrary angle between the easy 

magnetization axes of the particles and the external magnetic field. The potential energy of the system included 

single-particle dipole-axial interaction, single-particle dipole-field interaction, and long-range interparticle 

c d 

а b 
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dipole-dipole correlations. Two types of arrangement of particles in the system are studied: at the nodes of the 

cubic lattice and randomly. For both textures, a theoretical expression for the Helmholtz free energy is obtained 

in logarithmic form. In developing the theory of dipole-dipole interactions in a system of stationary 

superparamagnetic particles, the decomposition of the Helmholtz free energy into the classical virial series 

was used. This approach has a number of disadvantages, for example, the alternation of the series and slow 

convergence. To weaken these effects, the work resorted to the logarithmic transformation of free energy, so 

that the final function in the form of a logarithm turns out to be less sensitive to the limitation of the number 

of terms in the series, and makes it possible to expand the applicability area of the developed theory to moderate 

densities of nanoparticles in the sample. On the basis of the obtained formulas for the Helmholtz free energy, 

a certain range of properties of the ferroparticle system has been studied: initial magnetic susceptibility, static 

magnetization, heat capacity. A graphical visualization is built for each parameter. It has been established that 

in a zero magnetic field the contribution of the dipole-dipole interparticle interaction to the Helmholtz free 

energy for an ordered system of particles depends on the polar angle 𝜑, and when they are randomly placed in 

the volume, there is no such dependence. When analyzing the results, it turned out that the random distribution 

is completely isotropic when the particles rotate in the Oxy plane. It is also found that the state of magnetic 

saturation does not depend on the angle 𝜑, and in a zero magnetic field there is no dependence on the angle θ  

for F  with the random distribution, while a similar conditionality is observed for the cubic lattice. 
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