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The study of the stress-strain state of an infinitely long thermoelastic cylinder has been carried out taking 

into account scale effects. A thermal protective coating is applied to the outer side surface of the cylinder, 

the thermomechanical characteristics of which are functions of the radial coordinate. Thermal boundary 

conditions of the 1st kind are set on stress-free side surfaces of the cylinder. To account for scale effects, 

the Aifantis’ one-parameter gradient theory of thermoelasticity is used. Additional boundary conditions and 

conjugation conditions for couple stresses are specified. The displacements and stresses are represented as 

the sum of the solutions of the thermoelasticity problem in the classical formulation and the gradient parts. 

After finding the radial temperature distribution, the thermoelasticity problem in the classical formulation 

with respect to radial displacements and stresses is solved numerically by the shooting method. Additional 

boundary layer terms for radial displacements at small values of the gradient parameter are found using the 

asymptotic method for solving linear differential equations with spatially varying coefficients (the 

Wentzel–Kramers–Brillouin method – WKB method). Specific examples of calculations are given for 

radial displacements, Cauchy stresses, couple stresses and total stresses in the case of both homogeneous 

and inhomogeneous coatings. It has been found that Cauchy stresses and total stresses experience a jump 

at the boundary between the cylinder and the coating. The couple stresses at small gradient parameters are 

much less than the total stresses. An increase of the scale parameter reduces the values of radial 

displacements and total stresses. Deformations are continuous in the cases of both homogeneous and 

inhomogeneous coating. A comparative analysis of the influence of the inhomogeneity parameter value on 

the distribution of displacements and total stresses has been done. 

Key words: gradient thermoelasticity, hollow cylinder, Cauchy problems, shooting method, WKB method, 

thermal protection coating, inhomogeneous materials 

 

1.Introduction 

 

Thermal protective coatings are designed to protect against premature destruction of structural elements of 

constructions operating in a high-temperature environment. The main feature of thermal protective coatings is 

the low coefficient of thermal conductivity, as a result of which the temperature of the metal substrate becomes 

much lower than the temperature on the surface of the coating. Coatings are usually made from homogeneous 

materials such as ceramics. However, due to the difference in the thermomechanical properties of the coating 

and the substrate, areas of stress concentration can appear on their interface, which can lead to delamination 

of the coating. As an alternative to homogeneous and layered coatings in recent years, inhomogeneous coatings 

have come forward, in which the thermomechanical properties are not constants, but coordinate functions [1]. 

When they are used, there are no jumps in material properties at the “coating-substrate” interface. 

The most common method for studying the state of inhomogeneous bodies is the finite element method [2]. 

Other approximate methods are also used. For example, in [3], an economical numerical-analytical method for 

solving the thermoelasticity problem for an elongated rectangle consisting of two types of heat-shielding 

coatings, homogeneous and functionally graded, is proposed. For each type of coating, its own model of 

thermoelastic deformation of the “coating-substrate” system is presented. The deformation models are based 

on special distribution laws for the components of the displacement vector and temperature over the coating 

thickness, which made it possible to take into account the effect of inhomogeneity of thermomechanical 

characteristics and satisfy the conditions for matching displacement fields, stresses, temperature and heat flow. 

The unknown functions included in the expressions for the temperature and displacement transformants were 

determined using the variational principle of thermoelasticity and the Kantorovich method. 

When calculating the stress state in microsized objects, the gradient theory of elasticity is used. This theory 

takes into account scale effects, that is, the dependence of the stress-strain state (SSS) on the characteristic 

dimensional parameters. The gradient theory of elasticity, formulated in the middle of the last century in the 

works of Tupin [4] and Mindlin [5], later received its generalization to the theory of thermoelasticity [6]. 
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For the first time, the Lame problem from the standpoint of the gradient theory of elasticity was considered 

in [7] for an infinite-length pipe and a spherical shell, which are under the action of uniform external and 

internal pressure. However, the practical use of the Tupin–Mindlin model ran into the question of identifying 

five additional gradient modules. In order to simplify the constitutive equations, the applied gradient models 

of Aifantis [8–11] and Lurie [12] were proposed, the constitutive equations of which include only one gradient 

parameter. Within the framework of the Aifantis one-parameter model, in [13], on the basis of the variational 

principle, the equilibrium equations and boundary conditions of the problem of equilibrium of a homogeneous 

thick-walled hollow cylinder under mechanical loading were obtained, and an analytical solution of the 

problem was found using the apparatus of modified Bessel functions. Analytical solutions have also been 

obtained for the problem of determining the SSS of an inhomogeneous hollow cylinder under power laws of 

inhomogeneity of thermal and mechanical loading [14–16]. 

Single-parameter gradient models of mechanics are also used to refine the SSS of layered elastic [17–20] 

and thermoelastic [21, 22] bodies. In [17], in the framework of the interfacial layer model, S.A. Lurie 

numerically investigates the equilibrium of a layer with a coating under the influence of a localized normal 

load. The solution is obtained using the integral Fourier transform and its numerical inversion. In [20], the 

problem of bending a microbeam with a partial coating is solved. The effect of a change in the magnitude of 

the scale parameter on the nature of the distribution of displacements and stresses in the beam and on the 

position of its neutral line is studied. Under the assumption that the problem is one-dimensional, the SSS of 

thin-layer composite structures under thermal action was analytically studied in [21]. The authors of [22] 

solved the problem of gradient thermoelasticity for a composite rod, and to find the Cauchy stresses, the 

asymptotic Vishik–Lyusternik approach was used, which takes into account the presence of boundary layer 

solutions in the vicinity of the boundaries and the conjugation point of the rods. The dependence of the Cauchy 

stress jump on the ratio of the physical characteristics of the rods and the scale parameter is also studied. 

The objectives of this work are as follows: formulation of the problem of gradient thermoelasticity for a 

hollow cylinder with a thermal protective coating under effective nondimensionalization; selection, on the 

basis of the asymptotic Wentzel–Kramers–Brillouin method, the WKB method, of the boundary layer parts of 

the solution; using the shooting method to solve the problem of thermoelasticity in the classical formulation; 

testing the solution method on the example of a homogeneous coating; calculation of radial displacements, 

Cauchy stresses, total and couple stresses for both homogeneous and inhomogeneous coatings; the analysis of 

the obtained results. 

 

2. Constitutive relations of gradient mechanics 

 

In the gradient theory of elasticity, the strain energy density depends not only on the strain, but also on its 

first gradient [5]. In the case of a linear isotropic material, the expression for the strain energy density in the 

framework of the Aifantis one-parameter model has the form [8]: 

 

 ( ) ( )( )2

, , , ,2 2ii jj ij ij ii k jj k ij k ij kw l         = + + + , (1) 

 

where   and   are the Lamé parameters, ij  are the components of the strain tensor, l  is the gradient 

parameter that characterizes the microstructural structure of the material and has the dimension of length (for 

example, for polycrystalline solids, this is the grain size). 

In the gradient theory of elasticity, the components of the Cauchy stress tensor ij , couple stress tensor ijsm

, and total stress tensor ij  are represented as: 
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 ( )2 2

, 1ij ij ijs s ijm l  = − = −  . (4) 

 

The mathematical formulation of the problem of gradient thermoelasticity includes [6]: 

– the equilibrium equations written in total stresses 
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, 0ij j = ; (5) 

 

– mechanical static boundary conditions 

 

 ( ) ( ), , ,, ,ij j ijs s j ijs s s ijs s j s z ij z
n m n m n m n n n t − − + = ,      ,ijs s j s im n n = ; (6) 

 

– mechanical kinematic boundary conditions 

 

 i iu v= ,        ,
i

i j j

v
u n

n


=


; (7) 

 

– classical heat equation 

 

 ( ), ,
0ij i j

k T = ; (8) 

 

– thermal boundary conditions of the 1st kind, given on the surface TS  

 

 0
TS

T T= ; (9) 

 

– thermal boundary conditions of the 2nd kind, given on the surface qS  

 

 0
qS

q q= . (10) 

 

Here: it , i  are the components of force vectors given on the surface of the body; in  are the components of 

the unit vector of the normal to the body surface at the considered point; T  is a temperature; ijk  are the 

components of the thermal conductivity tensor; q  is a heat flow; q TS S S=  is the surface of the body;   is 

the nabla operator (Hamilton differential operator); the comma in the subscript means differentiation with 

respect to the coordinate. 

In the polar coordinate system, the expressions for the nonzero components of the tensors (2)–(4) and the 

components of the vectors (6) have the form [14, 15]: 
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Here   is the thermal stress coefficient. 

 

3. Statement of the gradient thermoelasticity problem for a cylinder 

 

Let us consider an infinitely long thermoelastic cylinder, on the outer side surface 1r h=  of which a thermal 

protective coating with a thickness h  is applied. Zero temperature is maintained on the inner side surface r a=  

of the cylinder. The outer surface of the coating r b= , where 1b h h= + , is stress free and is at a temperature 

of 0T . The material of the cylinder is homogeneous, characterized by Lame coefficients 1  and 1 , thermal 

http://doi.org/10.7242/1999-6691/2021.14.3.21


А.О. Vatulyan et al. Computational Continuum Mechanics. 2021. Vol. 14. No. 3. pp. 253-263 DOI: 10.7242/1999-6691/2021.14.3.21 

256 

conductivity coefficient 1k , thermal stress coefficient 1 . The coating material has characteristics 2 , 2 , 2k  , 

2 , depending on the coordinate r . Let us represent the material characteristics of the ”cylinder-coating” 

system in the form of piecewise continuous functions: 

 

 ( )
 

( ) ( 
1

2

const, , ,

, , ,

F r a b
F r

F r r b c

 = 
= 


 (11) 

 

where any of the material characteristics of the cylinder (or coating) can act as 1F  (or 2F ). 

According to the classical formulation of the problem, the conditions of continuity in temperature, heat 

flux, displacements, and radial stresses must be satisfied on the mating surface of the coating and the cylinder 

1r h= . Since the equilibrium equations in the gradient theory have an increased order of differential equations 

compared to the classical theory, we will set additional boundary conditions and conjugation conditions. As 

additional conditions, we assume: 1) equality to zero of couple stresses on the side surfaces of the cylinder; 2) 

continuity of displacement gradients and couple stresses on the mating surface of the cylinder and the coating 

1r h=  [13]. To simplify the calculations, we will assume that the gradient parameter is the same for the coating 

and the cylinder, i.e. 1 2l l l= = . Thus, the formulation of the boundary value problem of thermoelastic 

deformation of a coated cylinder takes the form: 
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Let us state dimensionless problem (12)–(19) by the formulas: 

 

 
r

b
 = ,   ru

U
b

= ,   
0

rr
rr




 = ,   

0








 = ,   

0

rr
rrS




= ,   

0

S







= ,  

 
0

rrr
rrr

m
M

b
= ,   

0

r

r

m
M

b






= ,   
0

r

r

m
M

b






= ,    
0

r
r

t
t


= ,    

0

r
r

b





= ,    

0

T
W

T
= ,    

0

k
k

k
= ,    

0





= ,    

0





= ,  

0





= ,    1

0

h
R

b
= ,    0 0

0

0

T



= ,    

l

b
 = ,    

a
a

b
= ,    

 
( )0

,
max
r a b

k k r


= ,    
 

( )0
,

max
r a b

r 


= ,    
 

( )0
,

max
r a b

r 


= .  

 

 

In dimensionless form, the problem (12)–(19) will be as follows: 
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In this case, the dimensionless Cauchy stresses will be written as  

 

 ( ) 02rr

dU U
S W

d
    

 
= + + − ,      ( ) 02

U dU
S W

d
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 
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4.  Problem solution 

 

Let us start solving the problem of uncoupled thermoelasticity (20)–(27) by finding the radial temperature 

distribution in the cylinder and in the coating. It follows from the solution of the heat conduction problem in 

the classical formulation (23), (24) and has the form: 
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After determining the temperature, we proceed to finding the displacements and stresses, which, according 

to [8], can be represented as the sum of the solution of the thermoelasticity problem in the classical formulation 

and additional gradient terms: clas gradU U U= + . 

Assuming 0 =  in (20)–(27), we arrive at the classical statement of the problem, which in the case of an 

inhomogeneous coating material can only be solved numerically. Let us use the shooting method [23] for this. 

After some transformations, we obtain a canonical system of two inhomogeneous ordinary differential 

equations of the 1st order with respect to radial displacements clasU  and radial stresses clas : 
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, (31) 

 

and boundary conditions: 

 ( ) 0clas a = ,      ( )1 0clas = . (32) 
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According to the shooting method, the solution of the boundary value problem (30)–(32) described by the 

inhomogeneous system of ordinary differential equations can be represented as the sum of the solution of the 

inhomogeneous Cauchy problem (30), (31) with zero initial conditions on the inner surface: ( ) ( )1

0 0U a = , 

( ) ( )1

0 0a = , and solutions homogeneous Cauchy problem (30), (31) with non-zero initial conditions on the 

inner surface: ( ) ( )1

1 1U a = , ( ) ( )1

1 0a = , multiplied by the coefficient p : 

 

 ( ) ( ) ( )0 1clas p   = +  ,      ( ) ( ) ( )0 1clasU U pU  = + . (33) 

 

When calculating pairs ( ) ( )( )0 0,U   , ( ) ( )( )1 1,U    in the case of functions ( )F   that do not have 

discontinuities of the 1st kind, we use the standard procedures of the Runge–Kutta method of the 4th–5th order 

of accuracy. We determine the unknown constant p  from the initial condition on the outer side surface of the 

cylinder: ( ) ( ) ( )0 11 1 1 0clas p = +  = . 

If the functions ( )F   have a discontinuity of the 1st kind on the surface 0R = , we solve the Cauchy 

problems on the interval  0,a R , then we set the solutions found at the point 0R =  as initial conditions for 

additional Cauchy problems, which we then solve on the half-interval  )0;1R . 

Having a solution to the problem of thermoelasticity in the classical formulation, we proceed to finding 

additional gradient terms for a small value of the parameter   based on the asymptotic WKB method [23]. To 

do this, we first compose an equilibrium equation in displacements by substituting into (20) the expressions 

for the total stresses (21), (22), which include the Cauchy stresses (28). Let us consider a homogeneous 

equation of equilibrium in displacements, which will represent a 4th order equation with variable coefficients 

and a small parameter at the highest derivative. According to [24], the WKB solution will be sought in the 

form: 

 ( ) ( ) ( )g

gradU D e
 

 = . (34) 

 

Let us expand the functions ( )D   and ( )g   by the parameter  : 
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= + + + +

= + + + +
 (35) 

 

Let us substitute (34) into the equilibrium equation (20) taking into account expressions (35). Grouping the 

terms at the same degrees  , we obtain a sequence of problems, solving which we will find 

( )
( ) ( )( )

0

1

2
D 

    
=

+
 and two values ( )0g   in the form: ( )0g  =  and ( )0g  = − . Then the 

expressions for the gradient part of the displacements of the cylinder and the coating, due to the linearity of 

the problem, can be represented by the parameter as a linear combination of two WKB solutions: 
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2
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+
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1

2
gradU B e B e   

    
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+
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  (36) 

 

In formula (36), the constants 1B , 2B , 3B , 4B  are found by satisfying the boundary conditions (26), (27) 

for couple stresses and radial displacement gradients. Expressions 
2

rrr rrM S =  are made, where 

rr clas gradS  = + . The gradient additive for radial stresses is determined by the formula: 

( )2grad grad gradU U    = + + , and the expression (31) is used to find clas
 . With now known constants, 

we can further find the radial displacements and radial Cauchy stresses, couple and total stresses. 
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5. Calculation results 

 

Let us consider the results of calculating the distribution along the coordinate   of dimensionless 

temperatures, displacements, strains, Cauchy stresses, couple and total stresses in a cylinder with a heat-

shielding coating. In all calculations it is accepted: 0,6a = ; 0 0,9R = ; 0 0,4 = ; 1 1 1 1 1k  = = = = . 

On the example of a homogeneous coating, numerical verification of the proposed solution scheme was 

carried out. In this case, it was assumed in the calculations that the thermomechanical characteristics of the 

coating material are as follows: 2 2 = ; 2 1,5 = ; 2 1 = ; 2 0,1k = . Analytical expressions for displacements 

in the case of a homogeneous coating, according to [15], were represented as: 

 

 

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )
0

1 12 1
1 0 3 1 4 1

1 1

2 26 2
5 0 7 1 8 1

2 2

,
2

,
2

a

R

G
U G W d G I G K

G
U G W d G I G K





  
     

    

  
     

    

   
= + + + +   

+    

   
= + + + +   

+    





 (37) 

 

where ( )1I   , ( )1K    are modified Bessel functions of 

the 1st and 2nd kind of the first order. In formula (37), the 

integration constants 1 8, ...,G G  were determined by satisfying 

the boundary conditions (25)–(27). 

Figure 1 shows graphs showing the dependence of the radial 

displacement on the inner boundary of the cylinder on the 

parameter 0 0,1  . In this case, for comparison, the exact 

solution found by formulas (37) and the approximate solution 

using the shooting method and asymptotic formula (36) are 

shown. The maximum difference between the calculated 

displacement and the exact one was 10% at 0,1 = . For 

smaller values  , the solutions are closer to each other: for 

example, for 0,01 =  and they differ by 0.07%. It is found that 

the proposed numerical scheme for solving the problem for 

0,03   gives an error in displacements and stresses that does 

not exceed 1%. 

The following shows the distribution of the temperature 

(Fig. 2a) and displacement (Fig. 2b). For comparison, the 

solutions of the problem for displacement are given in the classical formulation for 0 =  and in the gradient 

formulation for 0,03. =  

 

  
Fig. 2. Distribution along the radial coordinate   of temperature (a) and displacement (b); exact 

solution at 0 =  (solid line) and gradient solution at 0,03 =  (dashed line). 

 

Fig. 1.  Dependence of the radial 

displacement on the inner boundary 

of the cylinder on the gradient 

parameter  ; exact (solid line) and 

approximate (dashed line). 

a 
b 
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Fig. 3. Distribution along the radial coordinate   of the Cauchy radial stress (a) and couple stress 

rrrM  (b) at 0,03 = . 

 

Figure 3 contains the distribution of the Cauchy radial stress rrS  (Fig. 3a) and couple stress rrrM  (Fig. 3b) 

at the value of the scale parameter 0,03 = . Figure 3a shows that the Cauchy radial stresses at the mating 

boundary suffer a discontinuity, which is due both to the difference in the thermomechanical characteristics of 

the cylinder and the coating, and with the continuity of displacements and their derivatives at the interface of 

dissimilar materials. It follows from Figure 3b that the couple stresses at low values rrrM of the gradient 

parameter are ten times less than the Cauchy stresses. They peak at the mating surface. 

Figure 4 shows the distribution of total stresses: radial (Fig. 4a) and circumferential (Fig. 4b), depending on 

the radial coordinate. In this case, the solid line shows the solution of the problem based on the classical 

formulation, the dashed line shows the solution of the problem in the gradient formulation at 0,03 = . 

According to Figures 2 and 4, it can be concluded that with an increase in the scale parameter, the values of 

displacement and total circumferential stresses decrease, and the total radial stresses suffer a discontinuity. 

 

  
Fig. 4. Distribution along the radial coordinate   of total stresses: radial stress (a) and 

circumferential stress (b); exact solution at 0 =  (solid line) and approximate solution at 
0.03 =  (dashed line). 

 

In the second series of calculations, it was assumed that the cylinder coating is made of an inhomogeneous 

material with an inhomogeneity law that ensures a continuous change in thermomechanical characteristics 

when passing through the mating surface in the form: ( ) ( )2 1 10 9
N

  = + − , ( ) ( )2 1 0,5 10 9
N

  = + − , 

( )2 1  = , ( ) ( )2 1 0,9 10 9
N

k  = − − , 1,2,...N =  . 

Let us show the results of calculation of displacements, deformations and stresses with the inhomogeneity 

index 1N = . Figure 5 shows the radial distributions of displacements (Fig. 5a) and total circumferential stress 

(Fig. 5b). It follows from the figure that, in the case of an inhomogeneous coating, in contrast to the case of a 

homogeneous coating, the total circumferential stresses do not undergo discontinuity, but change continuously, 

while an increase in the gradient parameter, just as in the case of a uniform coating, leads to a decrease in 

displacements and circumferential stresses. 

a b 

a b 
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Figure 6 shows the radial distribution of deformations dU d  in the “cylinder-coating” system for a 

homogeneous and inhomogeneous ( 1N = ) coating. It can be seen from the figure that at 0 = , in the case of 

a homogeneous coating, the deformations are discontinuous, while in the case of an inhomogeneous coating, 

they are continuous. In the gradient formulation, the deformations are continuous for both types of coverage. 

 

   

Fig. 5. Distribution along the radial coordinate   of displacement (a) and total circumferential 

stress (b); exact solution at 0 =  (solid line) and approximate solution at 0,03 =  (dashed line). 

 

   

Fig. 6. Distribution along the radial coordinate   of deformations dU d  in the cases of 

homogeneous (a) and inhomogeneous (b) coating; exact solution at 0 =  (solid line) and 
approximate solution at 0,03 =  (dashed line). 

 

   

Fig. 7. Distribution along the radial coordinate   of the displacement (a) and the total radial stress 

(b) at 0,03 =  and different values of the inhomogeneity parameter :N  1 (solid line) and 2 (dashed 

line). 
 

a b 

a b 

a b 
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 In addition, the influence of various heterogeneity laws, characterized by the parameter N , on the distribution of 

displacements and stresses was studied. Figure 7 shows graphs of the radial distribution of displacements and total 

radial stresses at 0,03 =  and different values of the parameter N . It follows from the figure that the law of 

inhomogeneity has a strong influence on the distribution of displacements and stresses. 

 

6. Conclusions 

 

The problem of gradient thermoelasticity for a cylinder with a thermal protective coating is studied. 

Displacements and stresses are presented as the sum of solutions of the classical thermoelastic problem and 

gradient terms. The problem of thermoelasticity in the classical formulation is solved by the shooting method. 

The gradient terms are obtained using the asymptotic WKB method. The difference from each other in the 

distributions of displacements and stresses along the radial coordinate, calculated according to the classical 

theory and found using the gradient theory of thermoelasticity, is shown. It was found that an increase in the 

value of the gradient parameter reduces the values of radial displacements and total stresses. The couple 

stresses at small values of the gradient parameter are much less than the total stresses. The Cauchy stress jump 

in the vicinity of the interface of dissimilar materials is explained by the continuity of displacements and their 

gradients. The influence of the inhomogeneity parameter in the power law, which models the 

thermomechanical characteristics of an inhomogeneous coating, on the distributions of displacements and total 

stresses along the radial coordinate is studied. 

Taking into consideration the influence of the gradient parameter in the analysis of the stress-strain state of 

a coated hollow cylinder is of great practical importance in calculating the strength and assessing the loss of 

stability of a thermal protective coating. The developed approach can be applied to find an approximate 

analytical solution to the problem of gradient thermoelasticity for a finite cylinder. 
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