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Concentrated suspensions of solids, widely used in the pharmaceutical, cosmetic and food industries, 

exhibit complex rheology. In rheometric one-dimensional flows of concentrated suspensions, a smooth or 

abrupt increase in stresses with a smooth increase in the strain rate intensity can be observed. This is 

related to the appearance of a first-order phase transition. In our previous work, a phenomenological 

rheological model of a concentrated suspension of solid particles in a Newtonian dispersion liquid has 

been developed. This model is characterized by an S-shaped flow curve and describes both continuous 

and abrupt increases in the stress intensity with a uniform increase in the strain rate intensity. In this 

work, exact analytical formulas are obtained for the flow velocity profiles of suspensions measured using 

rotary viscometers. The model proposed earlier is modified to take into account the non-Newtonian 

properties of the dispersion medium, which demonstrates pseudoplastic properties at low stress intensities 

and dilatant properties at high stress intensities. Based on the developed numerical model, the features of 

the flow of highly concentrated suspensions in plane and axisymmetric channels are analyzed. It is shown 

that in a flat diffuser, in contrast to Newtonian and pseudoplastic fluids, the longitudinal velocity of the 

suspension slows down near the walls, where the stresses are maximum, and accelerates in the central 

part of the channel. Calculations for the submerged jet in the area bounded by the walls show that, with an 

increase in the average velocity of the incoming pure liquid by more than 0.01 m/s, there occurs a local 

velocity vortex bounded by a layer with high particle concentration and more viscous medium. The 

concentration of particles inside the vortex is minimal. 

Key words: highly concentrated suspensions, rheological model, non-Newtonian dispersion medium, 

diffusion-convective transfer, numerical solution, plane and axisymmetric flows 

 

1. Introduction 

 

Suspensions of concentrated solid particles are widely used in medicine, perfumery, chemical, 

oil and gas industries for hydraulic fracturing. A distinctive feature of suspensions of solid particles 

is a continuous or discontinuous shear thickening  increase in stresses with an increase in the 

shear rate. At high particle concentrations, flow jamming can occur. 

A large number of publications are devoted to the rheology of concentrated suspensions and the 

mathematical modeling of their flows [1–18]. Recently, a number of scientific publications have 

appeared containing the results of experimental studies and theoretical modeling of the rheological 

properties of highly concentrated suspensions, demonstrating an abrupt stress response to a smooth 

increase in the shear rate [19–24]. At known stress intensity, the flow curve is unambiguous, but 

non-monotonic and has an S-shaped form. Such non-Newtonian rheology arises due to the frictional 

interaction of particles. Additional effects are introduced by the non-Newtonian properties of the 

pure dispersed phase [25–27]. The simplest model, which takes into account the linear increase in 

viscosity with increasing average stress, was used in [28], where analytical expressions were 

obtained for the pressure distribution and longitudinal velocity profile for pressure flow in flat, 

circular and annular channels with a moving boundary. However, this model is unable to describe 

the jump-like stress growth in response to an increase in shear rate. In a previous article [29], the 

author proposed a phenomenological model of a suspension with a Newtonian dispersion phase, 

which allows one to obtain accurate analytical expressions for the main rheometric flows necessary 

for the transition from the integral characteristics measured in the experiment to the flow curve, as 

well as for determining the material constants included in the model. 

If the dispersion liquid is non-Newtonian, the suspension exhibits pseudoplastic properties at low 

deformation rates, and dilatant at high deformation rates. The non-Newtonian rheology of 

concentrated slurries is the result of competition and balance between hydrodynamic (dissipative) 
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and thermodynamic (conservative) forces that result in a non-equilibrium microstructure in the 

flow. Suspensions of solid particles tend to form different structures under mechanical stress.  

Figures 1 and 2 show examples of structures at various concentrations and alternating loads from 

article [32]. 

 

  
Fig. 1. Clusters formed at a low 

concentration of particles (the 

suspension exhibits pseudoplastic 

properties) 

 

Fig. 2. Anticlusters formed at a 

high concentration of particles (the 

suspension exhibits dilatant 

properties) 

 

Also in article [29], to take into account the non-Newtonian properties of the dispersion medium, 

a modification of the model is proposed, which consists in adding Ellis's law [2, 10] for the 

dispersion phase: 
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where  
1

:
2

S  τ τ 1: - stress intensity, m
 









 - parameter, ,   - local and limiting 

concentration, 
0S ,

0  
0 - characteristic values of stress and viscosity, a, b, c - model parameters, m 

- fitting parameter. A typical form of the dependence of the effective viscosity on the stress 

intensity is shown in Figure 2. Model (1) at 1   describes a monotonically decreasing viscosity of 

the pure dispersion phase. As shown by trial numerical calculations of the plane Poiseuille flow, 

depending on the value of the applied pressure at the inlet and the parameters of the model, the 

velocity profiles in the cross section and the shear rate can have various complex shapes. 

 

         
Fig. 3. Typical form of flow curves: experiment (a), calculation by model (1) (b). 

 

The aim of this study is the further development of methods for numerical modeling of two-

dimensional problems of the flow of suspensions with an inhomogeneous distribution of the 

concentration of solid particles. 
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2. Statement of the problem  

 

In the general case, the flows of concentrated suspensions of solid particles with a non-

Newtonian dispersion phase are described by a system of differential equations reflecting the laws 

of conservation of momentum and mass: 

 

  T

efp
t
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 0 V , (3) 

and convective-diffusion transfer: 
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where t  is time, V is the velocity vector,  is the differentiation operator, p  is the pressure (ball 

part of the stress tensor), 
ef  is the effective viscosity,  is the density,   is the diffusion 

coefficient,   is the concentration of particles. System (2) - (4) with rheological equation (1) is 

closed by the corresponding boundary conditions. Thus, the no-slip conditions for the velocity 

0 V on fixed walls or the Cauchy conditions for the stresses  σ n F at free boundaries are 

specified. For concentration, conditions of the first     or third kind are set ( )h     n ,  

where  n  is the normal to the boundary, h  is the transfer coefficient). 

 

3. Method of solution  

 

The system of differential equations (2) - (4) is written in the form of Galerkin: 
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where U ,  ,   are weighting functions. To solve the system (5) by the finite element method 

(FEM), the original FEM FLOW package was used, equipped with a pre- and postprocessor, 

developed with the participation of the author [35]. The solution was reduced to a sequence of 

linearized problems, in which nonlinear terms were calculated from the results of previous 

iterations. At each iteration, discretization of the linearized problems was carried out using 

triangular finite elements with linear approximation of the components of the velocity and 

concentration vector, and the pressure was taken piecewise constant within quadrangles consisting 

of two triangular elements. The convergence of the iterative process was estimated from the 

effective viscosity, which depends on the local values of concentration and stress intensity and is 

calculated for each element until the condition is met: 
1

0
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k k

ef ef 





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where 310   is a given small number, k  is the iteration number.  
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4. Flow in a flat channel of a suspension with a Newtonian dispersion phase of a known 

constant concentration  
 

The problems of the flow of a suspension in a flat diffuser at a given constant concentration of 

particles are solved numerically. The system of equations of the finite element method in the form 

of Galerkin for a flat channel has the form: 
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where , ,x yv v p  - components of the velocity vector and pressure, 
xu , 

yu ,   - weighting functions. 

In the inlet section of the channel, the surface load 
xF  was set, in numerical terms equal to the inlet 

pressure. The adhesion conditions were set on the fixed upper and lower boundaries. Model (1) was 

used with material constants 0,29  , 0,56  , 
0 1,34   Pa s , 

0 0,63  Pa s , 
0 1S   Pa , 

40a  , 6b  , 1c  . 

The results of calculating the velocity fields of Newtonian, pseudoplastic fluids and suspensions 

in a flat diffuser on a grid consisting of 50,000 triangular elements are shown in Figure 4. 

 

  

 

 
Newtonian  fluids 1  , 0a  , 

0 1,34   Pa s , 
0 0,63   

Pa s   

 

 

 
Pseudoplastic fluid 1  , 40a  , 

0 1,34   Pa s  , 
0 0,63   Pa s    

b а 
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Suspension 0,29  , 40a  , 

0 1,34   Pa s , 
0 0,63  , Pa s  

 

 

Fig. 4. Isolines of the longitudinal velocity (a) and profiles of the longitudinal velocity along the sections (b). 

 

Note that, in contrast to Newtonian and pseudoplastic fluids, the longitudinal velocity of the 

suspension slows down near the walls, where the stresses are maximum, and it increases in the 

central part of the channel. 

 

4. The flow of a suspension with a non-Newtonian dispersion phase in an axisymmetric 

channel 

 

Let us consider a more complex problem related to the theory of submerged jets [34]. Figure 5 

shows a simplified diagram of the device used to study bacterial microflora [30].  

 

 
Fig.5. Diagram of the device. 

 

The computational domain is represented as a glass with a tube inserted into it, which does not 

reach the bottom. In the initial state, the space between the glass and the tube is filled with solid 

particles. Some time after the start of feeding a pure dispersion medium into the tube, under the 

action of the pressure 
0P  applied at the tube inlet or a given average velocity 

0V , a certain fraction 

of the particles is carried out of the region. A layer is formed on the rough inner walls of the 

channel, which is determined by competing processes: adhesion of particles and their washing away 

by a stream. As a result, an equilibrium regime is established. In this model, it is assumed that the 

boundary layers have a constant limiting concentration   . The system of equations in the form of 

Galerkin describing the laminar flow of a suspension in an axisymmetric channel with length L  and 

radii 
zR  (outer) and  0R  (inner) when solving the problem by the finite element method has the 

form: 
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where 
rv , 

zv , p  are the components of the velocity vector and pressure,   is the local 

concentration of particles, 
xu , 

yu ,  ,    are the weighting functions, 
0zF P  is the distributed 

load equal to the pressure at the inlet, 
 









  parameter that depends on the local concentration 

of particles. On the channel walls, the no-slip conditions were specified for the velocity, and the 

boundary conditions of the first kind for the concentration. In the calculations, a model with 

material constants was used: 0,56  , 
0 1,34   Pa s , 

0 0,63   Pa s , 
0 1S   Pa s , 40a  , 

6b  , 1c  . The calculations were performed on a mesh of 6000 triangular elements. Depending 

on the parameters of the problem, the convergence of the solution required from 70 to 100 

iterations. First, consider the results of calculating the distribution of the main process variables in 

the channel at a known inlet pressure 
0P . Despite the non-monotonic nature of the flow curve, in 

this case the stress intensity field uniquely determines the strain rate intensity field. Moreover, all 

the variables shown in Figure 6 behave in a fairly predictable manner. When the velocity of the 

dispersion medium entering the tube with a nonmonotonic curve is known at the inlet, the flow is 

fundamentally different from the case considered above. With an S-shaped flow curve, a given 

strain rate field can cause from one to three states of the stress field that satisfy the equilibrium 

equations, and one of the states is unstable. Which of the two stable states is realized is determined 

by prehistory, the role of which is played here by convective transfer. 

 

 
Pressure p  

 
Effective viscosity 

ef  

 
Velocity  rV  
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Figure 7 shows the results of calculations of the distribution of the relative concentration of 

particles in a suspension with a non-Newtonian dispersion medium at different speeds of a pure 

liquid entering through a tube. Since in the areas of counter flows there are maximum velocity 

gradients, at the points at which the strain rate intensity exceeds the characteristic value for a given 

concentration, the stress intensity increases abruptly by 2–3 orders of magnitude. As a result, a layer 

with an increased viscosity and concentration of particles arises, which, with an increase in the 

average injection velocity, first bends upward, towards the reverse flow, and then, at a velocity of 

the incoming pure liquid exceeding 0.1 m/s, a stable anti-cluster is formed - a closed vortex limited 

Velocity 
zV  

 
Relative concentration */   

Fig. 6. Distribution of the main variables in the channel at a given inlet pressure. 

 

 

0 0,01V  m/s 

 

0 0,05V  m/s 

 

0 0,10V  m/s 

 

0 0,50V  m/s 

*      
          1,0     0,9     0,8     0,7     0,6     0,5     0,4     0,3     0,2     0,1     0,0 

 
Fig. 7. Distribution of the relative concentration of particles in the channel at a given average injection velocity. 
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by a layer of highly viscous medium with a high concentration of particles. The concentration inside 

the vortex is minimal. 

 

6. Conclusion  
 

A numerical model has been developed for quasi-stationary laminar two-dimensional flows of 

concentrated suspensions with a non-Newtonian dispersion phase and with dilatant properties. On 

model problems, implemented by the finite element method, the efficiency of the proposed new 

rheological model of concentrated suspensions is shown, which describes an increase in apparent 

viscosity with increasing stress intensity. The features of the flow of highly concentrated 

suspensions in flat and axisymmetric channels are revealed. It is shown that in a flat diffuser, in 

contrast to Newtonian and pseudoplastic fluids, in a suspension the longitudinal velocity decreases 

near the walls, where the stresses are maximum, and increases in the central part of the channel. In 

the model problem of displacing solid particles from a cylindrical glass under the action of a given 

pressure, despite the non-monotonic nature of the flow curve, the stress intensity field uniquely 

determines the distributions of the main flow variables. When the average velocity is specified at 

the tube inlet, the property of non-monotonicity of the suspension flow curve leads to the existence 

of one to three states of the stress field that satisfy the equilibrium equations, two of which are 

stable. Which of the stable states will take place is determined by the prehistory, the role of which 

in this case is played by convective transfer. 

As a result of calculations, it was found that with an increase in the velocity of an incoming pure 

liquid and its excess of 0.01 m/s, the formation of a local vortex with a minimum concentration of 

particles inside it is observed. The vortex is confined to a layer with a high concentration of 

particles and a more viscous medium. This phenomenon requires further theoretical research and 

experimental confirmation.  

The study was carried out with the financial support of the Russian Foundation for Basic 

Research within the framework of scientific project No. 20-45-596020. 

 

References 

 

1. Verdier C. Rheological properties of living materials. From cells to tissues. J. Theor. Med., 2003, 

vol. 5, pp. 67-91. https://doi.org/10.1080/10273360410001678083 

2. Khodakov G.S. Reologiya suspenziy. Teoriya fazovogo techeniya i eye eksperimental’noye 

obosnovaniye [Suspension rheology. The theory of phase flow and its experimental 

substantiation]. Ros. khim. zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleyeva), 2003, vol. XLVII, 

no. 2, pp. 33-43. 

3. Guillou S., Makhloufi R. Effect of a shear-thickening rheological behaviour on the friction 

coefficient in a plane channel flow: A study by direct numerical simulation. Journal of Non-

Newtonian Fluid Mechanics, 2007, vol. 144, pp. 73-86. 

https://doi.org/10.1016/j.jnnfm.2007.03.008 

4.Galindo-Rosales F.J., Rubio-Hernandez F.J., Velazquez-Navarro J.F. Shear-thickening behavior 

of Aerosil® R816 nanoparticles suspensions in polar organic liquids. Rheol. Acta, 2009, vol. 48, 

pp. 699-708. https://doi.org/10.1007/s00397-009-0367-7 

5. Liu A.J., Nagel S.R. The jamming transition and the marginally jammed solid. Annu. Rev. 

Condens. Matter Phys., 2010, vol. 1, pp. 347-369. https://doi.org/10.1146/annurev-conmatphys-

070909-104045 

6. Seth J.R., Mohan L., Locatelli-Champagne C., Cloitre M., Bonnecaze R.T. A micromechanical 

model to predict the flow of soft particle glasses. Nature Mater., 2011, vol. 10, pp. 838-843. 

https://doi.org/10.1038/nmat3119 

7. Galindo-Rosalesa F.J., Rubio-Hernбndez F.J., Sevilla A. An apparent viscosity function for 

shear thickening fluids. Journal of Non-Newtonian Fluid Mechanics, 2011, vol. 166, pp. 321-

325. https://doi.org/10.1016/j.jnnfm.2011.01.001 

https://doi.org/10.1080/10273360410001678083
https://doi.org/10.1016/j.jnnfm.2007.03.008
https://doi.org/10.1007/s00397-009-0367-7
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1038/nmat3119
https://doi.org/10.1016/j.jnnfm.2011.01.001


O.I. Skul’skiy Computational Continuum Mechanics. 2021. Vol. 14. No. 2. pp. 210-219 DOI: 10.7242/1999-6691/2021.14.2.18 

218 

8. Boyer F., Guazzell E., Pouliquen O. Unifying suspension and granular rheology. Phys. Rev. 

Lett., 2011, vol. 107, 188301. https://doi.org/10.1103/PhysRevLett.107.188301 

9. Nakanishi H., Nagahiro S., Mitarai N. Fluid dynamics of dilatant fluids. Phys. Rev. E, 2012, vol. 

85, 011401. https://doi.org/10.1103/PhysRevE.85.011401 

10. Fortier A. Mécanique de suspensions [Suspension mechanics]. Masson et C-ie, 1967. 176 p. 

11. Ur’yev N.B. Fiziko-khimicheskiye osnovy tekhnologii dispersnykh sistem i materialov 

[Physicochemical foundations of the technology of dispersed systems and materials]. Moscow, 

Khimiya, 1988. 255 p. 

12. Tanner R.I. Engineering rheology. Oxford University Press, 2000. 586 p. 

13. Brown E., Jaeger H.M. Shear thickening in concentrated suspensions: phenomenology, 

mechanisms and relations to jamming. Rep. Prog. Phys., 2014, vol. 77, 046602. 

http://iopscience.iop.org/0034-4885/77/4/046602 

14. Denn M.M., Morris J.F. Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. 

Eng., 2014, vol. 5,  

pp. 203-228. https://doi.org/10.1146/annurev-chembioeng-060713-040221 

15. Ardakani H.A., Mitsoulis E., Hatzikiriakos S.G. Capillary flow of milk chocolate. Journal of 

Non-Newtonian Fluid Mechanics, 2014, vol. 210, pp. 56-65. 

https://doi.org/10.1016/j.jnnfm.2014.06.001 

16. Mari R., Seto R., Morris J.F., Denn M.M. Nonmonotonic flow curves of shear thickening 

suspensions. Phys. Rev. E, 2015, vol. 91, 052302. https://doi.org/10.1103/PhysRevE.91.052302 

17. Pan Zh., de Cagny H., Weber B., Bonn D. S-shaped flow curves of shear thickening 

suspensions: Direct observation of frictional rheology. Phys. Rev. E, 2015, vol. 92, 032202. 

https://doi.org/10.1103/PhysRevE.92.032202 

18. Ness C., Sun J. Shear thickening regimes of dense non-Brownian suspensions. Soft Matter, 

2016, vol. 12, pp. 914-924. https://doi.org/10.1039/c5sm02326b 

19. Vázquez-Quesada A., Ellero M. Rheology and microstructure of non-colloidal suspensions 

under shear studied with Smoothed Particle Hydrodynamics. Journal of Non-Newtonian Fluid 

Mechanics, 2016, vol. 233, pp. 37-47. https://doi.org/10.1016/j.jnnfm.2015.12.009 

20. Nagahiro S., Nakanishi H. Negative pressure in shear thickening bands of a dilatant fluid. 

Phys. Rev. E, 2016, vol. 94, 062614. https://doi.org/10.1103/PhysRevE.94.062614 

21. Vázquez-Quesada A., Wagner N.J., Ellero M. Planar channel flow of a discontinuous shear-

thickening model fluid: Theory and simulation. Phys. Fluid., 2017, vol. 29, 103104. 

https://doi.org/10.1063/1.4997053 

22. Singh A., Mari R., Denn M.M., Morris J.F. A constitutive model for simple shear of dense 

frictional suspensions. J. Rheol., 2018, vol. 62, pp. 457-468. https://doi.org/10.1122/1.4999237 

23. Singh A., Pednekar S., Chun J., Denn M.M., Morris J.F. From yielding to shear jamming in 

a cohesive frictional suspension. Phys. Rev. Lett., 2019, vol. 122, 098004. 

https://doi.org/10.1103/PhysRevLett.122.098004 

24. Egres R.G., Wagner N.J. The rheology and microstructure of acicular precipitated calcium 

carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 2005, vol. 49, 

pp. 719-746. https://doi.org/10.1122/1.1895800 

25. Skulskiy O.I., Slavnov Ye.V., Shakirov N.V. The hysteresis phenomenon in nonisothermal 

channel flow of a non-Newtonian liquid. Journal of Non-Newtonian Fluid Mechanics, 1999, vol. 

81, pp. 17-26. https://doi.org/10.1016/S0377-0257(98)00091-3 

26. Aristov S.N., Skul'skii O.I. Exact solution of the problem on a six‐constant Jeffreys model of 

fluid in a plane channel. J. Appl. Mech. Tech. Phys., 2002, vol. 43, pp. 817-822. 

https://doi.org/10.1023/A:1020752101539 

27. Aristov S.N., Skul'skii O.I. Exact solution of the problem of flow of a polymer solution in a 

plane channel. J. Eng. Phys. Thermophys., 2003, vol. 76, pp. 577-585. 

https://doi.org/10.1023/A:1024768930375 

https://doi.org/10.1103/PhysRevLett.107.188301
https://doi.org/10.1103/PhysRevE.85.011401
http://iopscience.iop.org/0034-4885/77/4/046602
https://doi.org/10.1146/annurev-chembioeng-060713-040221
https://doi.org/10.1016/j.jnnfm.2014.06.001
https://doi.org/10.1103/PhysRevE.91.052302
https://doi.org/10.1103/PhysRevE.92.032202
https://doi.org/10.1039/c5sm02326b
https://doi.org/10.1016/j.jnnfm.2015.12.009
https://doi.org/10.1103/PhysRevE.94.062614
https://doi.org/10.1063/1.4997053
https://doi.org/10.1122/1.4999237
https://doi.org/10.1103/PhysRevLett.122.098004
https://doi.org/10.1122/1.1895800
https://doi.org/10.1016/S0377-0257(98)00091-3
https://doi.org/10.1023/A:1020752101539
https://doi.org/10.1023/A:1024768930375


O.I. Skul’skiy Computational Continuum Mechanics. 2021. Vol. 14. No. 2. pp. 210-219 DOI: 10.7242/1999-6691/2021.14.2.18 

219 

28. Kuznetsova Yu.L., Skul’skii O.I., Sitnikova M.A. Lubricant flow in pressure pipes during 

wire drawing in a hydrodynamic friction mode. J. Frict. Wear, 2007, vol. 28, pp. 359-363. 

https://doi.org/10.3103/S106836660704006X 

29. Skul’skiy O.I. Rheometric flows of concentrated suspensions of solid particles. Vychisl. 

mekh. splosh. sred – Computational Continuum Mechanics, 2020, vol. 13, no. 3, pp. 269-278. 

https://doi.org/10.7242/1999-6691/2020.13.3.21 

30. Fuks N.A. Mekhanika aerozoley [Aerosol mechanics]. Moscow, Izd-vo AN SSSR, 1955, 

352 p. 

31. Gray J.M.N.T. Particle segregation in dense granular flows. Annu. Rev. Fluid Mech., 2018, 

vol. 50, pp. 407-433. https://doi.org/10.1146/annurev-fluid-122316-045201 

32. Sanli C., Lohse D., van der Meer D. From antinode clusters to node clusters: The 

concentration-dependent transition of floaters on a standing Faraday wave. Phys. Rev. E, 2014, 

vol. 89, 053011. https://doi.org/10.1103/PhysRevE.89.053011 

33. Sánchez-Rosas M., Casillas-Navarrete J., Jiménez-Bernal J.A., Kurdyumov V.N., Medina 

A. Experimental and numerical study of submerged jets from pipes of different wall thicknesses 

for Re<1. Revista Mexicana de Fisica, 2020, vol. 66,  

pp. 69-76. 

34. Yavorskiy N.I. Teoriya zatoplennykh struy i sledov [The theory of submerged jets and 

trails]. Novosibirsk, In-t teplofiziki SO RAN, 1998. 242 p. 

35. Skul’skiy O.I., Fonarev A.V., Kuznetsova Yu.L. «FEM FLOW» – finite element program 

for calculating the flow of a viscoelastic fluid in channels with a free surface, taking into account 

non-isothermal. RF Copyright Certificate No. 2007611760, 25 April 2007. 
 

The authors declare no conflict of interests. 

The paper was received on 23.04.2021. 

The paper was accepted for publication on 22.05.2021. 

https://doi.org/10.3103/S106836660704006X
https://doi.org/10.7242/1999-6691/2020.13.3.21
https://doi.org/10.1146/annurev-fluid-122316-045201
https://doi.org/10.1103/PhysRevE.89.053011

