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Shear bands often appear during plastic deformation. The Chernov–Luders band is an example of a 

complex multiscale heterogeneous structure containing shear bands. The article is devoted to the analysis 

of a part of the experimental data on the formation (under tension) of the Chernov–Luders band in 

textured polycrystalline steel samples with fine grain, pre-deformed by rolling. The main focus is on the 

criston mechanism of formation of the observed texture components. The essence of the criston approach, 

associated with the contact interaction of dislocations at the intersection of slip planes, is briefly outlined. 

The information on the observed types of texture is given and a sufficiently detailed analysis of the 

reconstruction of the mechanism of the appearance of several texture components is carried out taking 

into account the interaction of the main dislocation slip systems for a body-centered cubic (bcc) lattice. It 

is shown that some of the real shear directions correspond to the interaction of more than two dislocation 

slip systems, that is, in fact, there are criston-cristons combinations. A summary table of the results of the 

analysis of the "composition" of cristons for all texture components is presented, reflecting the fractional 

contribution of dislocations belonging to interacting slip systems. The analysis has shown that practically 

all systems of standard slip along the planes of the {110}, {112}, {123} families play an active role in the 

formation of cristons and, accordingly, the observed texture. Brief summary comments are provided. In 

particular, it was noted that, with a sequential criston approach, the issue of non-Schmidian slip variants 

can be eliminated. The role of texturing is also noted for the ordering of the intergranular medium and the 

appearance of macroconcentrators in groups of contacting grains, which, as experience shows, are 

important in the formation of the Chernov–Luders band, is emphasized. 
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1. Introduction 

 

The formation of the Chernov-Luders bands (CLB) occurs during plastic deformation and is a complex 

hierarchical process that proceeds in a consistent manner at several scale levels. This feature has been 

repeatedly highlighted in the literature (see, for example, [1–3]). In particular, the formation of CLB in alloys 

with a body-centered cubic (bcc)  lattice in the macroscopic description of the curve (  ) (stress – strain) 

shows an abrupt decrease followed by a plateau-like area (“yield tooth”). Moreover, the plateau itself 

(fluidity area) may consist of smaller jumps. Most often, CLBs are observed in tensile experiments on 

polycrystalline samples. The angles between the normals to the CLB macro boundaries and the direction of 

tensile are usually within a segment (45–60 °). CLB is structurally heterogeneous; its internal striped 

structure was found. Inner shear bands have borders that are not necessarily parallel to each other. When 

CLB occurs, the main deformation localized precisely in the shear bands. The lattice inside the CLB is 

clearly turning. Hence, disclination models can be used to describe the CLB formation process. From the 

kinetic point of view, the slow (with a speed of  ~10
–5

 m / s) broadening of the CLB finds a rather clear 

interpretation in the propagation of fronts [3, 4]. Apparently, the lattice curvature plays a significant role [5], 

especially for high-strength materials [6].  

It was shown earlier [7–10] that the description of the crystallographic orientations of the boundaries of 

the shear bands, which differ from the typical slip planes of ordinary dislocations, can be easily achieved 

using the concept of cristones. Cristons are generated by generalized Frank – Reed sources (GFRS), arising 

from strong (contact) interaction of dislocations with intersecting slip planes. When describing the 

orientation of the boundaries of shear bands using the cristones model, there is a simple connection with the 

fractional contribution of dislocations to the "composition" of the cristone. For example, for an face-centered 

cubic (fcc) lattice with only one family of slip planes  111  and twelve slip systems, the simplest standard 

orientations of shear band boundaries are: 
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 hh ,         h l n m n m   , (1) 

where n  and m  are integers, the moduli of which are equal to the number of dislocations of two contacting 

systems. Figure 1 shows a diagram of the formation of a dislocation “bundle” of two systems of dislocations 

along the line of intersection 1-10Λ  of a pair of slip planes. This "bundle" plays the role of the GFRS 

segment, characterized by the superposition Burgers vector b : 

 

1 2n mb b b .      (2) 

 

A slight simplification was made in the calculations. It is assumed that the vectors 
1b  and 

2b  have a purely 

edge orientation with respect to the working segment of the GFRS. It is clear that the curvature of the GFRS 

segment turns the Lomer - Cottrell type barrier into a source of dislocations sliding along the planes  hhl  to 

which b  it belongs.  

In the case of a bcc lattice, three families of planes can be active in the slip of dislocations:  110 ,   112  

and  123 .  The orientations  hhl  of the boundaries of the 

shear bands are also inherent in alloys with a bcc lattice. If the 

configuration of the cristone core corresponds to pure shear 

deformation (see [8, 9]), then in the shear region there will also 

be a change in the orientation of the lattice. Thus, the cristone 

concept makes it possible to understand how the transition from 

the level of translational easy slip of individual dislocations to 

the mesoscopic level of the formation of shear bands with a 

changed orientation of the lattice occurs. Consequently, it is 

possible to use the crystallographic information on the evolution 

of shear bands to supplement the understanding of the 

mechanism of the formation of CLB. Further, for this purpose, 

the results of work [11] are analyzed, in which the formation of 

CPL was observed in polycrystalline samples with a bcc lattice, 

which have a pronounced texture after rolling. 

 

2. Experimental data 

 

 Fine-grained steel 08G2B (0.08 C, 1.87 Mn, 0.043 (Nb + Ti), 0.49 Cu) with a grain diameter of 5d   

μm was considered in [11]. Samples for subsequent stretching were cut so that the direction of stretching 

coincided with the direction of rolling, as 

shown in Figure 2. The digital image 

correlation method made it possible to measure 

elongation deformation yy  and shear 

deformation xy . It was found that the 

formation of PCL is associated with the action 

of a stress mesoconcentrator, in the region of 

localization of which the component yy  

reaches its maximum, while the component xy  

is minimal. In contrast, the component xy  

becomes maximum at the edges of the shear 

band. The formation of preferred orientations 

of crystals in local microvolumes, that is, the 

establishment of texture, was carried out by the 

method of diffraction of backscattered 

electrons (Electron Back-scattering Diffraction 

— EBSD). Figure 3 shows the intensity 

 
Fig 1. Formation of the working segment of 

the  GFRS. 

 
Fig 2. Tensile sample cutting scheme. 
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distribution of the four main types of texture components in different regions of the sample. The specification 

of the types of components is carried out by indicating the planes and directions of shear in the planes given in 

the orthogonal basis associated with the edges of the unit cell of the bcc lattice: 

 

 Type I — 112 -110 ,    113 -110 ,    112 -311 ; (3) 

 Type II —  332 02-3 ,    332 1-33 ,    113 3-61 ,    112 3-51 ; (4) 

 Type III — along plain  111 ; (5) 

 Тип IV —  001 110 . (6) 

 

 Obviously, all the planes 

included in (3) - (6) are of the 

type, however, in contrast to the 

fcc lattice with a single family 

of octahedral slip planes, in the 

bcc lattice, cristone shear 

carriers are generated by a 

GFRS with Λ  orientations of 

the working segments, in the 

general case, not collinear 

1-10  -directions. Note also 

that, after rolling, the texture is 

dominated by type I and type II 

components, while approaching 

the center of the CLB is 

characterized by an increase 

and predominance of type IV 

components. 

 

3. Comparison of the carriers of the shift of cristones with the observed components of the texture 

 

Recall that the appearance of a rolling texture corresponds to the separation of some preferred directions 

from the initial set of chaotic orientations of crystal lattices of polycrystals (grains) with an indication of the 

planes that make up the smallest angles with the rolling surface after deformation. As you know, during 

rolling, the greatest deformation is compression, leading to a turn of the sliding planes in the direction of 

decreasing the angle between the sliding plane and the rolling plane (this turn is also supported by tension 

orthogonal to compression). It is obvious that shear processes with Burgers vectors exceeding Burgers 

vectors of single dislocations will lead to a higher strain rate. Therefore, it is natural to compare the observed 

texture components with cristone shear carriers characterized by superposition Burgers vectors b . It should 

be borne in mind that to determine the orientation of the normal to the slip plane, it suffices to find the vector 

product b  and  Λ  

 

  ,N b Λ║ . (7) 

 

From (7) it follows that the N  orientation depends only on the edge (with respect to Λ ) component of 

the vector b . Obviously, adding to the superposition vector a vector b  of arbitrary magnitude, collinear to 

m, does not affect the fulfillment of condition (7), since the vector a is orthogonal to any direction. 

Obviously, if we add to the superposition vector b  an arbitrary in magnitude vector ||b , collinear Λ , then 

condition (7) will be satisfied, since the vector 
||b  is orthogonal to any direction  hhl . This means that when 

determining the vector b  belonging to the  hhl  plane, an additive ambiguity arises:  

 

 '   ||b b b b . (8) 

 

 
Fig . 3. Density of textural components in different parts of the  CLB. 



M.P. Kashchenko et al. Computational Continuum Mechanics. 2021. Vol. 14. No. 2. pp. 203-209 DOI: 10.7242/1999-6691/2021.14.2.17 

206 

Let us briefly dwell on the consequences arising from the proposed simplest model of the shift carrier. 

We recall that when a shift along a plane with a normal N  in the direction b  occurs, a material rotation 

around the axis l  is realized:  

 

  ,b Nl ,  (9) 

 

where the symbol [,] means the vector multiplication operation. It is clear that for a purely edge orientation 

of the vector b  relative to the line [1-10], the shift along the  hhl  plane will be accompanied by a material 

rotation around the axis  1-10l , that is, around the dislocation line.  

Since the initial orientations Λ  are given by the intersection lines of the initial slip planes, that is, the 

vector products of the normals of the intersecting planes, there is an extremely simple algorithm that allows 

one to compare the composition of the chrystons with the observed texture components, which show the 

relative contributions of the contact interacting dislocations to the resulting Burgers vector. 

 

3.1. "Composition" of chrystones for texture components  112 -110 ,  112 -311 ,  112 3 - 51 , 

related to  slip systems on  110 planes 

 

Let us illustrate the definition of the “composition” of cristones for several cases, taking into account that 

the initial Burgers vectors in the bcc lattice correspond to half of the spatial diagonals of the unit cell, that is 

111 2i ab , where a  is the lattice parameter. For further analysis, the value of a  is insignificant and will 

be taken equal to 1. The factor 2 is not important either, so it can also be omitted as a common factor for all 

vectors. We define the resulting Burgers vector, as in (2), but with vectors 111ib . Let us consider the first 

variant 112 -110  of the texture. We start with 110  slip systems (SS) with the most dense packing of 

planes for a bcc lattice. Obviously, a pair of planes  101  and  011 corresponds to  11-1Λ , and a   112

slip plane is realized with the relation 1 1n m   in (2) for vectors 
1 ][ 111b  and  2 -11-1b . The texture 

 112 -311 , for example,   112 -311 , results from the addition to the preceding vector  1 2n b b  of a 

vector  3 -1-11nb  that is a multiple of the Burgers vector of a single dislocation from the SS  112 , a screw 

orientation with respect toΛ ; in case 112 3-51 , for example   112 -5-13 , should be added to  3 -1-11n . 

Thus, the textures  112 -311  and  112 3-51  are associated not only with SS  110 , generating 

cristones and defining the shear plane, but also with large " screw" contributions from conventional for bcc 

lattices of dislocations belonging to the  112  SS. 

 

3.2. "Composition" of chrystones for texture components  112 -110 ,  112 -311 ,  112 3 - 51 , 

related to  slip systems on  123  planes 

There is also an additional cristone channel for the implementation of texture components  112 -110 , 

 112 -311 ,  112 3-51  associated with the  123  SS. Indeed, choosing, for example, a pair of planes 

 123  and  12-3 , we find  -210Λ . For  1 11-1b  and  2 111b  we get 

 

 [ ], ,n m n m m n  b ,         ,  2  , 3m n m n n m     N . (10) 

 

From (10) it follows that for 2n m   the vector  121N , and  11-3b . It is clear that adding vectors Λb , 

collinear  2-10Λ , to  11-3b , we can easily find additional observable shear directions: 

 

        11-3 2-10 30-3 10-1  Λb b ,           2 11-3 2 2-10 5-1-3  Λb b . (11) 
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However, the formal procedure (11) now stands not only for the addition of the existing dislocations with 

vectors that are multiples of 111ib , but for the superposition Burgers vectors arising in the contact 

cristone- cristone interaction. This is easy to understand, taking into account that the Burgers vector 
Λb  

belongs to the  001  plane and, therefore, can be summed up with the cristone vector b , when the section of 

the cristone loop of the cubic slip is included in the working segment of the GFRS, since the planes  121  

and  001  intersect along  2-10Λ . 

 

3.3. Composition" of chrystones for texture components  001 110 , related to  slip systems on  110  or 

 112 planes 

Cubic slip arises as a result of the contact interaction of dislocations capable of sliding in the  110  or  112  

planes. Let us show it. For definiteness, we choose a pair of slip planes  110  and  1-10 . Then the line of 

intersection of the planes is  001Λ . For  1 1-11b  and  2 111b  we have: 

 

  , ,n m m n n m  b . (12) 

 

It follows from (12) that for n m  cubic slip along the  010  plane is associated with the vector  1 101b , 

and for n m   slip is possible along the  100  plane with the vector  2 010b . Accordingly, for a pair of 

slip planes  112  and  11-2  we find  1-10Λ . For  1 11-1b  and  2 111b  we get:  

 

  , ,n m n m m n  b .  (13) 

 

From (13) it follows that for n m , cubic sliding along the  001  plane is associated with the vector 

 1 110b , and for n m  , sliding is possible along the  110  plane with the vector  2 001b . 

 

3.4. Summary table of the "composition" of chrystones for the observed texture components 

 

Proceeding in a similar way, it is easy to find the ratio of n  and m  for all the resulting texture 

components. For specific options, this is demonstrated in the summary Table.  

Table. Determination of "compositions" of chrystones for texture components. 

Types of 

observable 

texture 

components 

Active 

sliping 

systems 

Slip (shear) 

planes of 

cristones 

Shear directions 

in the crystal model 

Orientation 

of the rotate 

axis in the 

shear band 

«Composition»

n m   

Type I 

  101 -111  

  1-10 111  
 2-11  

   022 011  

     022 11-1 131   
 11-1  1/1 

  123 11-1  

  12-3 111  
 121   11-3   -210  2/-1 

  110 1-11  

  112 11-1  
 -131  

 4-22  

     4-22 -2 1-10 = 101  
 1-10  3/1 

Type II 

  101 -111  

  1-10 111  
 2-11  

 022  

     022 +3 11-1 = 35-1  
 11-1  1/1 

  112 11-1  

  11-2 111  
 332  

 11-3  

     11-3 + 1-10 = 20-3  

       11-3 +2 1-10 = 3-1-3 -313  

 1-10  2/-1 
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Type III 

Type IV 

  112 11-1  

  11-2 111  

 111  

 001  

 22-4  

 220  
 1-10  

3/-1 

1/1 

 

Note that in order to obtain a complete set of experimental shear directions, it is necessary to add 

components collinear to the directions of the GFRS segments to the initial criston Burgers vector. 

For example, for the border of a strip with orientation n, the Burgers vector, which is compared with the 

cristone describing the first observed shear direction, contains an additional contribution - a component along 

the GFRS segment. Subsequent addition to the Burgers vector of a similar contribution gives the second 

tracked direction of the shift. For example, for the border of a band with orientation  332 , the Burgers 

vector, which is compared with the cristone describing the first observed shear direction, contains an 

additional contribution - a   1-10  component along the GFRS segment. Subsequent addition to the Burgers 

vector of a similar contribution gives the second tracked direction of the shift. 

 

3.5. Generalizing comments 

 

An analysis of the texture showed that all the initial systems of dislocation slip, typical of crystals with a 

bcc lattice, can participate in its formation, and they can lead to the appearance of GFRS and cristone shear 

carriers upon contact interaction. Taking into account the emergence  of  variants cristone of  shear   during 

the developing plastic deformation (including due to cristone-cristone interactions) removes, in the opinion 

of the authors of this work, the question of the non-Schmidov nature of sliding discussed in [12] using the 

example of an alloy with an fcc lattice. Preliminary texturing of the initial misoriented polycrystalline 

medium and its saturation with mesoconcentrators (similar to GFRS) are factors contributing to the 

manifestation of collective effects in ensembles of interacting defects. These effects include not only the 

appearance of hierarchical strip structures, including CLB, but also destruction processes [13]. Texturing 

favors ordering in the intercrystalline medium, the proportion of which increases with a decrease in the size 

of the polycrystals. The formation of CLB, as shown by the data [11], is associated with the action of a 

certain stress macroconcentrator, the size of which exceeds the grain size. It seems likely that such a 

concentrator will form in a sufficiently large group of contacting grains with a similar texture. This is 

connected with the process of interaction of the GFRSs present in the grains, including the processes of 

creeping cristone loops up to the synthesis of the macroconcentrator. An intergranular medium in the 

presence of texture and a sufficient number of vacancies can combine quasicrystalline (anisotropic) 

properties with those of a viscous liquid. Thus, the analysis of the texture within the framework of the 

cristone approach provides additional information for refining the physical concepts of the mechanisms of 

formation of CLB. 

 

4. Conclusion 

 

1. Cryston schemes for the implementation of deformation processes made it possible to interpret all 

the texture components traced during tension of an alloy with a fine-grained structure after preliminary 

rolling. 

2. The enrichment of the CLB center with the  001 110  component corresponds to equal 

contributions from contact interacting dislocations and leads to the greatest deviation of the shear band 

boundaries from the orientation of the plane 112 .  taken as a reference. This is consistent with the change in 

the orientations of the shear bands observed in [11] during the development of the CLB. 

3. In the cristone scheme, the occurrence of the GFRS is a universal factor. In the presence of a 

polycrystalline structure, the GFRS size is limited by the grain size. It seems promising to develop a model 

for the formation of a macroconcentrator of stresses as a consequence of the interaction of GFRS in a group 

of contacting grains. 

4. Known scenarios for the formation of CLBs, similar to nonequilibrium phase transitions in a system 

of defects, including the autowave description [3, 14], can apparently be refined and supplemented by taking 

into account (along with dislocations and disclinations) cristones. 

The authors are grateful to A.N. Morozova for the experimental data presented in [11], as well as to the 

participants of the XXII Winter School on Continuum Mechanics (March 22-26, 2021, Perm) for valuable 
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