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The paper considers a porous piezoelectric composite with metal layers deposited on the interface 

between the piezoelectric and vacuum phases. Such metal layers can be added technologically to improve 

the mechanical and electromechanical properties of the composite. To find effective modules, we 

designed a simple representative cubic volume of a unit cell, consisting of a piezoelectric matrix with a 

compound spherical pore in its center. In turn, the compound pore includes the pore itself and a hollow 

metal sphere on its surface. The three phases of the composite were modeled as piezoelectric materials. 

The conducting interface layer was modeled as a piezoelectric material with very high dielectric 

constants, small piezoelectric moduli, and elastic properties of the employed metal, while the vacuum 

pore was modeled as a piezoelectric material with marginal moduli. A mathematical formulation of the 

boundary value problems of homogenization with full contact conditions at the interface boundaries, 

based on the Hill energy criterion, was described. By solving nine boundary value problems of 

electroelasticity with different boundary conditions for displacements and electric potential using the 

finite element method, a complete set of effective moduli of the piezoelectric composite was determined. 

The importance of considering the inhomogeneous polarization due to the presence of pores and metallic 

inclusions was discussed. An approximate method was proposed for determining the inhomogeneous 

polarization field in a piezoceramic matrix, based on a preliminary solution of the electrostatic problem of 

dielectrics and on locating the elemental coordinate systems rotated along the polarization vector. The 

paper describes the results of computational experiments for a piezocomposite consisting of PZT-5H 

piezoceramic matrix, pores, and nickel layers on the pore surfaces. Comparisons between the effective 

properties of the composite with different volume fractions of metal and a conventional porous 

piezocomposite were made p, depending on the porosity, and taking into account the inhomogeneous 

polarization. Significant differences were observed of some piezomoduli and dielectric constants, which 

are promising for various practical applications of the considered composites in piezoactuators operating 

on the use the phenomenon of the transverse piezoelectric effect. 

Key words: piezoelectric composites, porous piezoceramics, piezoelectric ceramic-metal composite, 
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1. Introduction 

 

Due to the unique property of electromechanical coupling, piezoelectric materials are currently 

used in a wide range of applications, including ultrasonic medical technology, aerospace industry, 

smart materials technologies, microelectromechanical (MEMS) systems, nondestructive testing, and 

others [1–5]. Piezoelectric ceramics are the most commonly utilized piezoelectric materials, since 

they have high piezoelectric moduli, and the technology used to create them makes it possible to 

control their key properties. Furthermore, by introducing controllable porosity into a piezoelectric 

material, the efficiency of piezoelectric ultrasonic devices can be significantly g enhanced [6, 7]. 

Porous piezoelectric composites have greater piezoelectric voltage moduli, lower acoustic impedance, 

and superior hydrostatic properties than dense piezoelectric ceramics [8, 9]. However, piezoceramics 

and, consequently, porous piezoceramic composites are rather brittle materials, which limits their use 

[10, 11]. Degradation of the stiffness characteristics of porous piezocomposites at high porosity can 

result in mechanical damage, dielectric breakdown, and reduced reliability of devices made of these 

materials [12, 13]. 
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The  inclusion of metal particles into a piezoelectric matrix can considerably optimize its 

mechanical characteristics, particularly, reduce the fracture toughness [14, 15]. To improve the 

mechanical, electrical, and functional properties of porous piezoceramic composites A.N. 

Rybyanetset et al. [16, 17] devised a new technique of producing piezocomposites in which 

polymer microgranules of various forms filled or coated with metal-containing micro- or 

nanoparticles are introduced into the piezoceramic matrix during the manufacturing process. 

Therefore, it is feasible to create a porous piezocomposite with metal layers placed at the interfaces 

between the piezoelectric matrix and vacuum inclusions. In this work, the novel porous 

piezoceramic composite with metal inclusions and the conventional porous piezocomposite are 

denoted for brevity as SMPS (a system with metallized pore surfaces) and OPS (an ordinary porous 

system), respectively. The homogenization problem of SMPS has several features: SMPS is a three-

phase composite with closed porosity and, accordingly, with a closed metallization structure, that is, 

a composite of 3-0-0 connectivity (following R.E. Newnham's terminology [18]). 

Despite the presence of the conductive metal inclusions, SMPS is a dielectric medium at the 

macroscale due to the assumed closed porosity. However, its constitutive relations are quite 

different. Solving the homogenization problem of SMPS, metal inclusions might be regarded as 

piezoelectric materials with extremely large dielectric constants and very small piezomoduli, as in 

the works [19, 20]. 

Another feature of SMPS is its significant heterogeneity at the microscale level. Although a pure 

piezoceramic medium is often regarded as a transversely isotropic material uniformly polarized 

around the 
3Ox  axis, this assumption is considerably less justified for SMPS. Indeed, even in OPS, 

the characteristics of the piezoceramic matrix material near the pores might differ from those of the 

corresponding dense piezoceramic material. Due to the substantial inhomogeneity enhanced in 

SMPS, the characteristics of the piezoceramic matrix near the pore walls with metal inclusions 

become functions of spatial coordinates. In this context, we examine the influence of the 

inhomogeneity of the polarization field on the effective modules. The inhomogeneity of the 

polarization vectors in a representative volume of the composite is determined by solving the 

electrostatics problem, which models the polarization process of piezoelectric ceramics, as 

described earlier in [19, 21–23]. After that, the homogenization problems of SMPS and OPS can  be 

handled using the recalculated moduli of uniformly polarized piezoceramics considering local 

coordinate systems with the 
3Ox  axes parallel to the directions of the obtained polarization vectors. 

The effect of polarization inhomogeneity on the effective properties of SMPS was investigated in 

[19]. However, the metal layer formed on the pore surface was considered to have a negligible 

thickness in this study, hence, its elastic characteristics were ignored. As a modification of the 

approach of [19], the stiffness properties of the metal layer were included in the SMPS model. The 

effective properties of SMPS and OPS were determined using the effective moduli method and the 

finite element analysis of the homogenization problems over a simple representative volume 

element (RVE), as described in [19]. Here, the RVE was regarded as a piezoceramic cube with a 

spherical pore in the center and a spherical metal layer at the interface between the piezoelectric and 

vacuum phases. To perform numerical calculations, a collection of algorithms was developed in the 

ANSYS APDL finite element package. These algorithms implement all steps of homogenization 

problems for the piezocomposites under consideration. 

As a result of these numerical experiments, considering the inhomogeneity of the polarization 

field, the effective modules were shown to be dependent on the volume fraction of porosity and the 

portion of metal inclusions. When the inhomogeneity of the polarization field was taken into 

account, the piezoelectric coefficients fluctuated more than the other coefficients. In addition, the 

thickness of the metal layer has a significant impact on the effective piezoelectric modules. 

 

2. Mathematical model 

 

The key components of the formulation of the homogenization problem for the described 

piezocomposites are the governing equations, conditions at the interphase boundaries, external 
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boundary conditions, and the structure of the representative volume. As in [19, 20, 22, 24], the 

equations are formulated in the framework of the linear theory of electroelasticity, and the boundary 

conditions were selected in accordance  with the theory of effective modules. 

 

2.1. Representative volume element (RVE) 

 

In order to show the key characteristics of the studied types of piezocomposites, we will consider 

a simple RVE (unit cell) model. . The RVE of SMPS was modeled as a cube  inside which a 

compound spherical pore
p  (the cube and sphere have the same centers), and the remainder of the 

cube 
pz filled with the primary piezoelectric material, that is

pz p  .The compound pore 

p , on the other hand, is made up of a vacuum pore 
v  and a hollow metal ball 

m  placed to its 

boundary: 
p v m   . Assume that the length of the edge of the cube is L , and the maximum 

radius of a composite spherical pore is  3 3 4pR L v  , where p pv    is the volume 

fraction of the compound pore. Since the inequality 2R L must be fulfilled, there is a rather strict 

constraint on porosity in this model: 0,52pv  .If the metal layer thickness is denoted by h , the 

radius of the vacuum pore 
v will be equal to R-h, and the inner and outer radii of the hollow 

sphere 
m are respectively R h and R .The volume of a metal hollow ball can be calculated by the 

formula     334 3m m pR R h v      , where m m pv    is the volume fraction of the 

metal layer 
m in the compound pore 

p . For the OPS, the unit cell is simplified, since the layer 

m  is absent and p v  . 

 

 

 

 

Fig. 1. Half of RVEs for OPS (a), SMPS( 0,27m  )(b) and SMPS  ( 0,01m  , , 0mh v  ) (c) at 0,25pv  ; – 

Piezo ceramic matrix,– vacuum, – metal, – Conductive layer, – Elastic shell. 

 

Figures 1a and 1b illustrate instances of OPS and SMPS unit cells sectioned by a plane passing 

through the center of the pore.  They also demonstrate variants of finite element meshes used in 

different phases of the composite, constructed using ANSYS. The pore is filled with a fictional 

piezoelectric material with a vacuum dielectric constant and weak piezoelectric and elastic 

properties. The metal layer is also considered to be a piezoelectric material with nickel elastic 

characteristics, negligible piezoelectric properties, and a very high dielectric constant. 

In Figure 1b, the thickness of the metal layer is 10h R when 0,27mv  .The use of a RVE 

similar to that illustrated in Figure 1b is not recommended if the thickness of the metal layer in the 

SMPS is considerably tiny ( , 0mh v  ), since the small dimensions of the elements in the layer will 

result in a high number of nodes in the finite element meshes. In this case, the RVE for SMPS (Fig. 

1c) is built in a different method, i.e., the metal layer is described as an electrically highly 

conductive layer surrounded by an elastic shell. The finite shell elements SHELL281 have elastic 

properties of the metal and the required thickness h .Volumetric finite elements model the electrical 

a b c 

Piezoceramic matrix 

metal 
Elastic shell 

vacuum 

Conductive layer 
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conductivity of a metal layer as a piezoelectric material with a very high dielectric constant and low 

piezoelectric and elastic properties. As mentioned in [19, 20], the thickness of such a layer that 

completely covers the pore boundary is negligible; hence, the suggested technique allows one to 

investigate metal layers with small thicknesses considering their elastic properties. The finite 

element model shown in Fig. 1c is mainly used to simulate SMPS with a small metal layer 

thickness. For SMPS with an average thickness of the metal layer ( 0,27mv  ), the obtained 

effective moduli using both methods of creating the RVE, presented in Figs. 1b and 1c, turn out to 

be approximately the same. 

The finite element models were mainly built using 10 nodal tetrahedral SOLID227 elements with 

piezoelectric analysis options. The free mesh method from the ANSYS software was used to 

generate the finite element meshes, with the possibility of setting the maximum length of the 

element edge. The calculation results were reasonable when the maximum length of the element 

edge was limited to 8L , 10L and 16L  for the OPS, the SMPS with 0,01mv  , and SMPS with 

0,27mv  , respectively. 

 

2.2. Boundary value homogenization problems 

 

To find the effective moduli of the composites under study, the following boundary value 

problems of averaging over the volume   were solved [19, 20, 22–24]: 

 

  * 0  L T ,  0 D , (1) 

 E    T c S e E ,  S   D e S ε E , (2) 

    S L u ,    E , (3) 

   0

 u L x S ,  
0   x E ,    x , (4) 
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In expressions (1)–(5)it is accepted:   - nabla operator; 
ij - stress tensor components (hereinafter 

, 1,2,3i j  );
ij —  strain tensor components; D  is the vector of electrical induction; E  is the vector 

of the electric field strength; Ec — ( 6 6 ) matrix of elastic stiffnesses 
Ec , measured at a constant 

electric field (hereinafter , 1,2,...,6   );e  — ( 3 6 ) matrix of piezoelectric modules
je  ; Sε - (

3 3 ) matrix of dielectric constants S

ii  measured at constant deformation; u - displacement vector; 

  - electric potential; ( )L a is a matrix operator depending on the vector 
1 2 3{ , , }a a aa , which may 

also be a nabla operator; 
0S — 6-dimensional array of constant values 

0S  ; 0E — vector of constant 

values 
0 jE ;    1 2 3, , , ,x x x x y z x  - vector of spatial coordinates; the symbol « » denotes the 

operation of transposition, and    ... ...  — the dot product. Boundary conditions (4) are typical for 

the effective moduli theory, but additional clarification is required. 

As usual for composite materials, it was assumed that the conditions of full continuity between 

any two adjacent phases at the interphase boundaries i v m    are fulfilled: 
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   0u ,     0  L n T ,
ix  (6) 

   0  ,   0 n D ,
ix , (7) 

 

where the boundaries of a spherical vacuum pore and a hollow metal ball are 
v v    and 

m m   , respectively, and  ...    represents a jump in the value  ...  upon passing over the phase 

boundary. 

 

2.3. Modeling the non-uniform polarization field 

 

The polarization process of a piezoceramic sample can be accomplished by applying a strong 

electric field that is greater than the coercive field. For carrying out this operation, electrodes are 

usually applied to the ends of the sample, perpendicular to one of the directions. The dipoles in a 

polarized piezoceramic sample will thus be mostly oriented in this direction. In general, it is 

presumed that pure piezoceramics are uniformly polarized in the 
3Ox  direction. Meanwhile, porous 

piezoceramic composites are inhomogeneous at the microscale, therefore, the dipoles and 

polarization vectors around the pores are not parallel to the main direction of the polarization field. 

The inhomogeneity of the polarization field influences the effective characteristics of piezoceramic 

OPS composites, but not considerably when compared to SMPS, as demonstrated in [19]. Indeed, 

SMPS has metal coatings on the surfaces of the pores, which are electrically conductive and induce 

a significant polarization field inhomogeneity. 

The inhomogeneous polarization will be estimated using a finite element solution of the related 

electrostatics problem over the RVE of OPS and SMPS, as described in [19, 22–24]. For a cubic 

volume  , such a problem can be formulated as follows 

 

 0 D , D E ,  E , x , (8) 

 
cE L   ,

1x , 0  ,
2x , (9) 

 0 n D ,
qx , (10) 

 

where 
1 2 q      , 

1 and 
2  are the electroded surfaces at 

3 2x L  and 
3 2x L , cE

—is the value of the polarization field strength, 
q — exterior surfaces of the RVE without 

electrodes, ( )  x — piecewise constant dielectric permittivity function (at 
pzx ,

 11 332 3S S    ); in a metal layer mx ;  is extremely significant; at the pore 
vx ,

0  ;in 

vacuum 12

0 8,85 10   ). For the problems (8) – (10), it is also necessary to add interface electrical 

boundary conditions (7). 

The finite element technique is used to solve problems (7) - (10) on a mesh with the same 

geometry as the subsequent homogenization problems (1) - (7), but with finite elements SOLID227 

and the option of solving an electrostatic problem. Using the solution to this problem, the vectors of 

electric induction ek
D  and electric field strength ek

E are obtained at the center point of each finite 

element ek  with number k  in the volume of the piezoceramic matrix 
pz . Consequently, the 

elemental polarization vectors ek
P may be calculated using the formula: 

 

 
0

ek ek ek P D E . (11) 

 

Since the dielectric constants of the piezoelectric phase are substantially greater than the 

dielectric constant of vacuum, the polarization vectors ek
P will almost coincide with the vectors of 

electric induction ek
D , according to the second formula from (8) and taking into consideration (11). 
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Figure 2 illustrates the distributions of vectors ek
D for OPS (Fig. 2a) and SMPS with 0,01mv   

(Fig. 2b). The inhomogeneity of the polarization vector in SMPS is significantly higher than in the 

OPS, as can be observed from the comparison between Figs. 1a and 1b. This is due to the presence 

of an electrically conductive layer 
m  in SMPS. Note that the directions of the polarization vectors 

in the SMPS with different layer thicknesses 
m , for example, at 0,01mv  and 0,27mv  , are 

practically the same, since the thickness h of the conducting layer does not affect the solution of the 

electrostatic problem. 

 

 
Fig. 2. Vectors of electric induction ek

D at 0,25pv   for OPS (a), SMPS at 0,01mv  , 0,25pv   (b); and elemental 

coordinate systems for the SMPS at 0,01mv  , 0,25pv  (c) 

 

Then a local (elemental) coordinate system 
1 2 3O ek ek ekx x x is generated for each finite element ek , 

in which the axis 
3O ekx aligns with the direction of the polarization vector ek

P . If the 
3O ekx axis is not 

parallel to the 
3Ox  axis of the global Cartesian coordinate system, then the 

1O ekx  axis is determined 

by the line of intersection of the plane perpendicular to the 
3O ekx  axis and the 

1 2Ox x plane. Then, the 

direction of the 
2O ekx axis may be easily determined as a line perpendicular to the 

3O ekx  and 
1O ekx  

axes. Only the position of the 
3O ekx axis is important in piezoelectric ceramics, which is a 

transversely isotropic material at each material point, and the 
1O ekx  and 

2O ekx  axes can be oriented 

arbitrarily in the plane perpendicular to 
3O ekx . 

The elemental coordinate systems constructed according to the described algorithm are shown in 

Fig.2c for SMPS with 0,01mv  . For clarity, we used a coarse finite element mesh, whose 

maximum length of element edges is 2L , as seen in Fig. 2c. In reality, fine meshes were used in 

the calculations for electrostatics problems (7) - (10) and for homogenization problems (1) - (7). 

Then, problems (1) - (7) were solved taking into account the inhomogeneous polarization as 

follows: the dielectric elements SOLID227 are replaced by piezoelectric ones with their material 

properties in accordance with the properties of the phases of the piezoelectric composite, and for 

each finite element its own elemental coordinate system is determined, which coincides with the 

local coordinate system 
1 2 3O ek ek ekx x x created at the previous step. According to this technique, the 

inhomogeneity of the polarization in piezoceramicis only taken into account by recalculating the 

modules 
Ec , 

je  , and S

ii , which were originally defined in the global Cartesian coordinate system, 

into the equivalent moduli in the elemental coordinate systems. This type of recalculation is done 

automatically in the ANSYS finite element software. 

 

2.4. Effective moduli method for piezoelectric composites 
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To determine the values of the effective moduli of piezoceramic composites for OPS and SMPS, 

the technology defined in [19, 20] was implemented, which includes the solution of boundary value 

problems of electroelasticity (1) - (7) with various non-zero values in boundary conditions (4). So, 

problems (1) - (7) are solved nine times: six times for one nonzero value
0S , when equalities are 

recognized in (4): 
0 0S S  , 1,2,...,6  , 

0 0jE  , and three times for one nonzero value of 
0E , 

that is, for 
0 0S   , 

0 0j jkE E  , 6k   , 7,8,9  . After obtaining solutions  1u


,  2u


, 

 3u


,  


 , for each of the problems (1) - (7) with 1,2,...,9   the components stress tensor

   1 11T
 

 ,    2 22T
 

 ,    3 33T
 

 ,    4 23T
 

 ,    5 13T
 

 ,    6 12T
 

  and 

components of the electric induction vector  iD


were determined in the volume  .The integral 

values of these quantities can also be obtained using the formula: 

    
1

... ... d


 
 

. (12) 

 

As a consequence, using the averaged voltages and electrical induction (12), the complete set of 

effective modules 
effEc , 

eff

ie  ,and
 effS

ij  of a piezoelectric composite material may be determined. 

So, from the solutions of problems (1)–(7) for various nonzero boundary conditions for 

displacements, when in (4) for a fixed index 1,2,...,6  , the following equalities are accepted: 

 

 
0 0S S  ,

0 0jE  , (13) 

 

the effective stiffness moduli 
effEc  and the effective piezomoduli 

eff

ie  can be obtained by the 

following formulas: 

 

  eff

0

Ec T S  
 ,  eff

0i ie D S 
 , (14) 

 

where 1,2,...,6  , 1,2,3i  . 

When solving problems (1) - (7) with various nonzero electrical impacts, the following criteria 

are satisfied in (4) for 7,8,9  , 6k   , that is, for 1,2,3k  : 

 

 
0 0S   ,

0 0j jkE E  , (15) 

 

the effective piezomoduli eff

ke  and the effective dielectric constants  effS

ik can be calculated again 

according to the expressions: 

 

  eff

0ke T E  
  ,   eff

0

S

ik iD E


  . (16) 

 

The proposed approach for calculating the effective properties is substantiated in [20, 24]. It can 

also be applied to piezoelectric composites with inhomogeneous polarization of the piezoceramic 

matrix, as well as composites with conductive inclusions. Based on limit transitions in analytical 

solutions of homogenization problems, the method utilized here was validated in [25, 26] for the 

porous dielectric composites with metalized pore surfaces. 

This homogenization method is based on the energy relationships between the heterogeneous 

composite and the homogenized one, which is known as the Hill relationships for the averaged 

values in piezoelectric composites [20, 24, 27]: 
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   T S T S ,      D E D E ,    0S S ,    0D D . (17) 

 

Naturally, homogenization problems (1) - (7) with (12) - (16) can also be solved without taking 

into account the inhomogeneity of the polarization field. In this simpler case, the piezoceramic 

matrix is assumed to be an ordinary piezoelectric material of the crystallographic class of 6mm, 

uniformly polarized along the 
3Ox  axis. 

When determining the full set of equivalent material properties, we checked the type of 

anisotropy of the resulting homogeneous material and found that it retains the symmetry class6mm 

of the piezoceramic matrix except for a small difference between the modulus eff

66

Ec and 

 eff eff

11 12 2E Ec c . The piezocomposite's principal moduli are therefore ten effective modules: eff

11

Ec , 

eff

12

Ec , eff

13

Ec , eff

33

Ec , eff

44

Ec , eff

31e , eff

33e , eff

15e , eff

11

S , and eff

33

S . However, for the RVEs with strong 

geometric asymmetry, this kind of anisotropy may be changed. 

 

3. Numerical results 

 

For a composite containing a PZT-5H piezoceramic matrix, nickel inclusions, and vacuum pores, 

the computational experiments were conducted. In these computations, the following material 

properties were used for the piezoceramic PZT-5H: 10

11 12,6 10Ec    N/m
2
, 10

12 7,95 10Ec    N/m
2
, 

10

13 8,41 10Ec    N/m
2
, 10

33 11,7 10Ec    N/m
2
, 10

44 2,3 10Ec    N/m
2
, 

31 6,5e    C/m
2
, 

33 23,3e   C/m
2
, 

15 17e   C/m
2
, 

11 01700S  , 
33 01470S  .  

The vacuum pore was modeled as a piezoelectric material with negligible moduli: ( )E E

vc c  , 

( )i ve   C/m
2
, 1010  , 

0( )S

ii v  . Metal (nickel) was assumed to be a piezoelectric material 

with negligible piezoelectric moduli: ( )i me  C/m
2
, and extremely high dielectric permittivity 

moduli: 
0( )S

ii m  , 1  .Using preliminary studies for the SMPS, the values of the effective 

moduli became stable already at 810  . However, the factor χ, for greater reliability regarding all 

variants of the SMPS was assumed to be 1210 . 

Nickel was characterized as an isotropic material with a Young's modulus of 1020,5 10mE  

N/m2 and a Poisson's ratio of 0,31m  . The nickel was chosen as an inclusion of the composite 

due to its high mechanical rigidity and relatively low cost [28, 29]. Thus, for the material under 

study, the longitudinal elastic stiffness of nickel was about 225% of the greatest modulus of 

elasticity 
11

Ec of the PZT-5H piezoceramic. 

Due to the insignificant moduli of the hypothetical pore material in the volume 
v , the integral 

values of stresses T  and electric inductions D in this volume are negligible and have no influence 

on the values of the effective moduli (14) and (16). As a result, the finite elements in the volume 

v  could not be included in the RVE. To ensure the correctness of the calculations, the integral 

characteristics were calculated in all phases of the composite in the APDL ANSYS programs, and 

the fulfillment of Hill's relations (17), which are valid for various versions of OPS and SMP 

composites, was checked considering the mechanical and electric fields in the pore and the metal 

layer. 

The following figures show the effective properties of OPS and SMPS composites compared to 

the corresponding properties of the dense piezoceramic matrix. The equivalent moduli are presented 

relatively to the analogous moduli of the implemented piezoceramic matrix, for example, are 

calculated as   effE E Er c c c   . In Figs. 3-5, the curves for OPS, SMPS with 0,01mv  , and SMPS 

with 0,27mv  are marked with numbers 1, 2, and 3, respectively. In addition, the solid lines show 

the effective properties of the studied composites with a uniformly polarized piezoceramic matrix; 
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whereas, the dotted lines show the effective properties taking the inhomogeneity of the polarization 

field into account. 

Figures 3a and 3b show the dependences of the relative effective moduli of rigidity  33

Er c and 

 13

Er c , respectively, on the volume fraction of porosity 
pv . As can be observed, they decrease 

monotonically as porosity increases, which is reasonable considering that the elastic moduli of the 

fictional pore material are insignificant. The effective elastic moduli of the SMPS can be enhanced 

compared to OPS by increasing the proportion of metal. For example, at 0,25pv  and 0,27mv  , 

the elastic moduli  33

Er c and  13

Er c for the SMPS increase by 42% and 41.7%, respectively, 

compared to the same moduli of OPS. The inhomogeneity of the polarization field insignificantly 

affects the moduli of elastic stiffness. Thus, for 0,25pv  , taking into account the polarization field 

inhomogeneity, the relative modulus of elasticity  33

Er c  of OPS  decreases by 4.06%, but increases 

by 5.5% and 4.08%, respectively, for SMPS with 0,01mv   and for SMPS with 0,27mv   in 

comparison with a uniformly polarized analogous composites. It  is  interesting to note that, despite 

having a metal layer that is more rigid than the piezoceramic matrix, SMPS's (at 0,01mv  ) 

effective elastic stiffness modulus  13

Er c are smaller than  similar OPS modulus. This unusual effect 

is due to the different values of the piezoelectric contribution to the equivalent elastic moduli of 

OPS and SMPS. 

 

   
Fig. 3. The relative effective stiffness moduli  33

Er c  (a),  13

Er c  (b), and relative dielectric modulus  11

Sr   

(c) as functions of the porosity volume fraction pv ; OPS (curve 1), SMPS with 0,01mv   (2), SMPS with

0,27mv   (3); homogeneous polarization (solid lines) and inhomogeneous polarization  (dotted lines). 

 

Figure 3c depicts the variation in the relative effective dielectric constant  11

Sr   with porosity. 

In contrast to the OPS, the relative dielectric permittivity constant  11

Sr   of SMPS monotonically 

increases with increasing porosity. Similar results were obtained by the Maxwell formula [26, 27] 

for conventional dielectric composites with metal inclusions. In SMPS, as in dielectrics with 

conductive inclusions, the metalized pore surface prevents the propagation of the electric field into 

the region
p . Therefore, the electric field caused by the electric impact (15) is completely 

preserved in the region 
pz  occupied by piezoceramics. Its integral value by  volume

pz  is higher 

than the corresponding integral value in OPS under similar conditions. The effect of metallization 

of pore surfaces is even more noticeable in the integral value of the electric induction field. As a 

result, for SMPS, the effective permittivity coefficients determined by (16) increase with the 

porosity increase, that is, with an increase in the area of metalized surfaces. The discrepancies 

between the effective dielectric constants of SMPS and OPS become more substantial when the 

а b c 



A.V. Nasedkin & M.E Nassar Computational Continuum Mechanics. 2021. Vol. 14. No. 2. pp. 190-202 DOI: 10.7242/1999-6691/2021.14.2.16 

199 

porosity is large. For example, the relative dielectric permittivity coefficient  11

Sr  of SMPS at

0,4pv   increases by 853% compared to the analogous module of the OPS. 

Upon increasing porosity, the relative permittivities  11

Sr   and  33

Sr   change in approximately 

the same way.  When polarization inhomogeneity is included, the relative dielectric modulus  11

Sr 

decreases for all composite systems, as shown in Fig.3c; at 0,25pv  , the relative dielectric 

modulus  11

Sr  of the OPS, SMPS with 0,01mv  , and SMPS with 0,27mv   decreases by 5.48, 

8.5, and 7.67%, respectively. However, the inhomogeneous  polarization affects the effective 

dielectric modulus  33

Sr  for SMPS to a lesser extent.  

 

   
Fig.4. The relative piezoelectric moduli  31r e  (а),  33r e  (b), and  15r e  (c) as functions of the porosity 

volume fraction
pv ; OPS (curve 1), SMPS with 0,01mv   (2), SMPS with 0,27mv   (3); homogeneous 

polarization (solid lines) and inhomogeneous polarization  (dotted lines). 

 

The dependences of piezomoduli  31r e ,  33r e , and  15r e on porosity are shown in Fig. 4. Since 

the equivalent piezomoduli of the vacuum phase are insignificant, the relative piezomoduli  31r e , 

 33r e , and  15r e of OPS decrease with rising porosity. Meanwhile, as shown in Fig.4a, as porosity 

increases, for SMPS the  relative piezoelectric modulus  31r e  grows monotonically, but the 

piezoelectric moduli  33r e and  15r e decrease monotonically. On the contrary, if the volume fraction 

of the compound pore in SMPS remains constant, and the fraction of metal 
mv increases, then this 

causes a decrease in  31r e  and an increase in  33r e  and  15r e , as seen in Figs. 4b and 4c. The 

differences between SMPS and OPS piezomoduli can be rather significant, especially the relative 

modulus  31r e .So, at 0,3pv  , the relative piezoelectric coefficient  31r e of the SMPS increases by 

726%, and the relative piezomodulus  33r e  of the SMPS decreases by 49% compared to the 

corresponding moduli of the OPS with the same porosity. 

Considering the inhomogeneity of the polarization field significantly affects the relative 

piezomodulus  33r e  of the SMPS and the piezomodulus  31r e  of SMPS ( 0,01mv  ), but slightly 

affects the piezoelectric moduli of OPS, the piezomodulus  15r e  of SMPS with 0,01mv  , and the 

piezomodulus  31r e  of SMPS with 0,27mv   (see Fig. 4). For example, for OPS at 0,25pv  and 

taking the non-uniformly polarized field into account, the piezoelectric modulus  31r e decreases by 

30.11%, and the piezoelectric modules  33r e and  15r e  increase respectively by 1.64% and 0.34% 

compared to the corresponding OPS moduli with a uniformly polarized piezoceramic matrix. The 

influence of considering the inhomogeneous polarization field on the piezomoduli  31r e  and 

а b c 
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 33r e reduces as the amount of metal inclusion increases in SMPS, while its effect on the effective 

piezomodulus  15r e increases. So, in the SMPS with 0,25pv  , taking the inhomogeneity of the 

polarization field into account, the relative piezoelectric modulus  33r e decreases by 63.1% and 

32.5% from its analogous values for the SMPS with a piezoceramic matrix at 0,01mv  and 

0,27mv  , respectively. 

 

   
Fig.5. The relative piezoelectric moduli  31r d  (а),  33r d  (b), and  15r d  (c) as functions of the porosity 

volume fraction
pv ; OPS (curve1), SMPS with 0,01mv   (2), SMPS with 0,27mv   (3); homogeneous 

polarization (solid lines) and inhomogeneous polarization (dotted lines). 

 

Figure 5 shows the dependencies of the relative piezoelectric strain coefficients  31r d ,  33r d

,and  15r d on porosity volume fraction 
pv . These piezoelectric moduli are important indicators for 

evaluating the efficiency of piezoelectric transducers in various practical applications and are 

determined by the formulas  
1

eff eff effE


 d e c . For OPS, the relative piezoelectric moduli  31r d

decreases with increasing the volume fraction of porosity 
pv , while the values of  33r d  and 

 15r d  remain almost constant. However, for the SMPS with a uniform polarization of the 

piezoceramic matrix, the relative piezoelectric strain coefficients increase monotonically with the 

porosity rise, especially the coefficient  31r d .As can be seen in Fig. 5, the relative piezomoduli

 31r d ,  33r d ,and  15r d of the SMPS decrease with the increase the metal volume fraction. 

Taking the inhomogeneous polarization into account insignificantly affects the relative piezomoduli

 31r d ,  33r d ,and  15r d of the OPS, as well as  31r d and  15r d  of the SMPS with 0,01mv 

.For example, considering the inhomogeneity of the polarization field for the OPS at 0,4pv  , the 

piezo moduli  31r d  and  33r d  decrease by 7.8% and 1.4%, respectively; however, the 

piezomodulus  15r d  increases by 5.4% compared to the analogous equivalent moduli for the OPS 

with uniform polarization. In general, considering the inhomogeneous polarization has a more 

significant effect on the SMPS's equivalent moduli. The piezoelectric strain coefficients become 

more dependent on polarization field inhomogeneity as the metal volume percentage increases. So, 

considering the inhomogeneity of the polarization field at  0,3pv  and 0,27mv  , the piezoelectric 

moduli  31r d ,  33r d ,and  15r d decrease by 19%, 30,4%and 10,5% compared to corresponding 

moduli of the same composites with a uniformly polarized piezoceramic matrix. 

 

а б в 
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4. Conclusions  

 

 The article looks into the homogenization problem of insufficiently researched porous 

piezoelectric composite with a metal coating at the pore boundaries. Such a composite, called 

SMPS, has a number of better mechanical and electromechanical properties compared to an 

ordinary porous system (OPS). The macro properties of the investigated piezocomposites were 

analyzed using computer modeling based on the finite element analysis, which considered the 

porosity and volume fraction of the metal in which the pores are enclosed. The influence of the 

polarization field inhomogeneity on the equivalent properties of SMPS and OPS has been studied. 

The presence of metal inclusion in SMPS increases the electric field and polarization at the 

interface between the piezoelectric and metallic phases, which causes a drastic change in the 

effective piezoelectric and dielectric permittivity moduli of this system compared to OPS. 

Considering the non-uniform polarization has a less significant effect on effective moduli of OPS. It 

was found that the transverse piezomodulus eff

31d and the shear piezomodulus eff

15d of SMPS turn out 

to be higher than the OPS, especially for small metal fractions in their volume. This fact allows us 

to recommend porous piezo composites with metalized pore surfaces as active materials for 

piezoelectric transducers operating on the use of transverse and shear piezoelectric strain 

coefficients. 

As a continuation of this research, we plan to consider the homogenization problems for more 

complex representative volumes of SMPS, with partial metal coating of the pore surfaces. We also 

intend to computationally model the piezoelectric emitters with active elements made of SMPS 

materials. 

Acknowledgement: This research was done in the framework of the RFBR project 20-31-90102. 
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