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This paper presents brief analysis of publications dealing with the issues of experimental and 

theoretical studies of spiral fluid flows. The flows of this kind occur, in particular, in the vicinity of drain 

holes and are also observed in nature as storms and tornadoes. A mathematical modeling of a plane flow 

in a cylindrical layer has been carried out assuming that the viscous incompressible fluid is supplied along 

the normal to its outer surface and, accordingly, the vortex flow happens through its inner surface. The 

well-known general solution of the problem of vortex flow in unlimited space has been taken as a basis. A 

variant setting of the two boundary conditions for determining the velocity azimuthal component is 

proposed. The first boundary condition is the requirement for the azimuthal velocity component absence 

at the cylindrical layer entrance. The second, less obvious, boundary condition is adopted in the form 

when the strain rate tensor second invariant value is set at the cylindrical layer entrance. The rationale for 

such variant setting of the second boundary condition is given. Finally, it became possible to find an 

acсurate solution to the problem in a general setting. It is shown that at the layer exit, the velocity 

azimuthal component, which was initially absent at the layer entrance, can exceed the radial velocity 

component by an order of magnitude or more. A family of streamlines is constructed for the examined 

flow in the polar coordinate system. It is shown that, in the general case, the streamlines for the flow 

under consideration must have an inflection point. The numerical dependence of the inflection point 

position radial coordinate on the Reynolds number was obtained. It is also shown that in the cylindrical 

layer exit vicinity the fluid pressure takes on lower values than for the purely radial flow case. An 

alternative formulation of the second boundary condition for the pressure is presented for determining the 

integration constants in the azimuthal velocity component expression. 

Key words: viscous incompressible fluid, plane spiral flow, boundary conditions, the second invariant of 

the strain rate tensor, streamlines, inflection point 

 

1. Introduction 

 

Spiral flows are of interest from the point of view of modeling natural phenomena and the 

functioning of technical devices. Such flows occur, for example, in drain holes. Various issues 

related to the experimental study of the flow characteristics and the conditions for the formation of 

funnels during the outflow of liquids are discussed in [1–6]. Natural spiral flows in the atmosphere 

and water bodies of the Earth, which are realized in the form of funnels, sandstorms and tornadoes, 

are well known [7–10]. A detailed review of such studies is given in [11]. 

Theoretical study, as well as mathematical modeling of the dynamics of vortex flows are reflected in 

extensive bibliography. The theory of the dynamics of a rotating fluid and its aspects as applied to some 

technical problems are presented in monographs [12–15]. An analysis of various options for setting the 

boundary conditions is presented in [16]. A number of important results were obtained in [17–30]. In 

many cases, vortex flows are considered in areas bounded by cylindrical surfaces. 

In [31], the problem of gas flow through a cylindrical surface in a rotating coordinate system is 

considered. It is shown that after the onset of a radial flow with gas flow into the cylinder, the 

formation of a spiral flow immediately begins under the action of the Coriolis force. The solution of 

the problem is carried out within the framework of the model of a compressible ideal gas for the 

case when neglect of its viscosity is permissible. 

The problem of the rotational Taylor – Couette flow for a viscous fluid in the gap between 

coaxial cylinders is well known. Since Taylor’s results [32], which were further developed in the 

works of various authors [33–36], it has been found that when the angular velocity of the inner 

cylinder rotation exceeds a certain critical value, the liquid particles “generate” components 

transverse to the previously existing circular streamlines velocity, and vortex structures begin to 

form in the gap. In this case, the streamlines of such structures are spirals wound on tori. 
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The problem of flow between two coaxial semi-infinite cylinders with a gap between the 

cylinders plugged at one end was considered in [37]. An asymptotic flow is simulated, which can be 

formed at a sufficiently large distance from the free end section of coaxial cylinders. It is shown 

that, in the axisymmetric case, the structure of closed streamlines in the gap in the direction of the 

longitudinal axis of the cylinders turns cellular. When the gap width is negligible in comparison 

with the radius of the outer cylinder, the asymptotic solution is obtained analytically. 

In [38, 39], one class of solutions of the equations of the dynamics of a viscous fluid in a 

cylindrical coordinate system for a steady flow is considered, provided that the radial and azimuthal 

components of the velocity depend only on the radial coordinate. 

This class also includes the problem of a vortex axisymmetric flow of a viscous fluid in an 

unlimited space; its general solution for the radial and azimuthal velocity components is presented 

in [40]. The resulting general solution for the azimuthal velocity component contains two undefined 

integration constants. In [40], a particular case of this general solution is given, where one of the 

integration constants is a priori taken to be zero, and the second constant is determined by means of 

a given flow circulation. 

It should be noted that the general solution from [40] can be taken as a basis when considering 

the problem of a plane flow in a cylindrical layer when fluid is supplied normally (radially) through 

the outer cylindrical surface and, accordingly, with a vortex flow through the inner surface. 

However, when obtaining the final expression for the distribution of the azimuthal velocity 

component, it becomes necessary to specify two boundary conditions for determining the two 

integration constants. In this formulation of the problem, the form of at least one of the two 

necessary boundary conditions for the azimuthal component of the velocity is not entirely obvious.  

In this paper, for a vortex axisymmetric flow of a viscous fluid, we propose options for writing 

two boundary conditions for the azimuthal component of the velocity, which makes it possible to 

obtain an exact solution to the model problem of vortex flow, describing the distributions of the 

velocity and pressure components in a cylindrical layer when the fluid is normally supplied through 

the external surface. In addition, the analysis of the obtained solution is carried out and the features 

of the velocity field and pressure distribution are discussed. 

 

2. Setting of the problem  

 

Consider a model problem of a plane steady axisymmetric laminar flow of a viscous 

incompressible fluid in a cylindrical layer. Suppose that the liquid is supplied normally through the 

layer outer surface, which has a radius of
2R . There is a constant pressure of

2P  maintained on it. In 

this setting, the drainage of the liquid occurs through the inner surface of the radius
1R . 

Let us introduce a cylindrical coordinate system in the traditional way. Taking into account the 

following assumptions: 0zu  , 0   , 0z   , we write down the equations of dynamics and 

the condition of continuity of the flow in dimensionless form [41]:  
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 — Reynolds number; r  — radial coordinate;  ,   — density and 
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dynamic viscosity of the fluid; 
ru , u  — radial and azimuthal components of flow velocity; P  — 

pressure; 
1V , 

2V  — known values of the modulus of the radial velocity component at the inner and 

outer cylindrical boundaries of the layer; Q  — absolute volumetric flow rate of fluid per unit length 

along the Oz axis of cylindrical system of coordinates. 

For the solution of the system of equations (1)–(3), it is necessary to require the fulfillment of 

four boundary conditions. The first two boundary conditions for the radial component of velocity 

and pressure have the following form: 

 

 2r R  :      
2ru V   ,      

2P P  . (4) 

 

Note that (4) act as boundary conditions for the considered problem, but only in the trivial case of a 

merely radial flow ( 0u  ). As for two more boundary conditions necessary to determine the 

azimuthal velocity component, they will be proposed below. 

A distinctive feature of the system (1)–(3) is that it allows the definition of the required functions 

ru , u
 , P  based on the sequential solution of its equations in reverse order: (3), (2), (1). In this 

setting, at the first step the solution of the equation (3) for the radial component of velocity 

considering the boundary condition (4), as well as  the correlation 
1 1 2 2V R V R   evident for the 

problem under consideration,  is always the following [42]: 

 

 
1

ru
r

  

. (5) 

 

At the next step, having substituted  (5) for (2), we come to a differential equation relative to the 

azimuthal component of the velocity, obtained earlier in [40] and written in the dimensionless 

notation adopted above: 
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General solution (6) is obtained in [40], and in a dimensionless form may be manifested as follows: 

 

 1 2

Re 1
( )

C С
u r

r r
 
  

 
, (7) 

 

where 
1C , 

2C  are undefined integration constants. 

Note that the authors [40] within the framework of general solution (7) limited themselves to 

considering only a particular case, when took 
2 0C  . In this case, the first constant of integration 

was determined through the specified circulation K  and, considering dimensionless form of 

notation (7), equaled  1 1 12C K RV . A characteristic feature of such a particular case is that in 

the flow region the azimuthal component of the velocity cannot be exactly zero. 

With finite dimensions of the flow region in the cylindrical layer 1 2R r R  , determination of 

the final form of the solution of the problem under consideration based on the general solution (7) 

with 
2 0C   involves setting two boundary conditions for the azimuthal velocity component. 

Taking into account the radial supply of fluid into the cylindrical layer through its outer surface, the 

first boundary condition can be obtained by requiring the absence of such a velocity component on 

the outer cylindrical surface: 

 2r R  :      0u  . (8) 
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The second boundary condition for the azimuthal velocity component at the outer boundary of the 

cylindrical layer is less obvious.  

Formally, determination of the azimuthal velocity component from a second-order differential 

equation (6) within the framework of the Cauchy problem statement requires satisfying one more 

boundary condition for the first derivative du dr
  . Note that the first derivative of the azimuthal 

velocity along the radial coordinate is directly related to the second invariant 
2I  of the strain rate 

tensor. Then, at the model level, the above-mentioned formalism can be realized by setting on the 

outer boundary the value 
2bI  of the strain rate tensor second invariant modulus: 
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, where 
2bI  is the modulus of the second invariant of the strain 

rate tensor on the outer boundary of the cylindrical layer, defined considering  (5) for the case of a 

purely radial flow ( 0u  ), 
r r ,  , 

r  are strain rate tensor components.  

Taking into account (5) and (8), boundary condition (9) – which is the second condition for the 

azimuthal component of the velocity, – after some transformations, can be represented as follows: 
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2
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
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. (10) 

 

The options for choosing the sign incorporated in (10) indicate the possibility of realizing two 

equivalent and opposite directions of "twisting" of the flow within the framework of solving the 

same initial system of equations. The concretization of the flow direction in the course of its 

realization, apparently, can be determined by the features of the initial stage of its "launch" or by 

additional factors. 

It is important that boundary condition (10) makes sense only for values
2 1bI   . The physical 

interpretation of the formulation of the boundary condition for the azimuthal velocity component in 

a similar form in the sense of its connection with more traditional mechanical characteristics will be 

given below. 

Thus, the solution of the considered problem of a plane flow of an incompressible fluid (of a 

vortex flow) when the fluid is supplied into a cylindrical layer along the normal to its outer surface 

must satisfy the boundary conditions (4), (8) и (10). 

 

3. Distributions of velocity and pressure components 

 

The solution to the problem for the radial velocity component has the well-known form given 

above (5). Now, taking into account the boundary conditions (8), (10), let us find the integration 

constants in (7) and, after the appropriate transformations, obtain an expression for determining the 

azimuthal component of the velocity: 
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Note that the case when the second invariant of the strain rate tensor at the outer boundary of the 

cylindrical layer takes on a value corresponding to a purely radial flow (
2 1bI   ), immediately leads 

from (11) to the expected result:   0u r
   . 

Now, substituting (5) and (11) into equation (1), after integration, taking into account the 

boundary condition (4), we find the expression for the pressure distribution: 
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Here, for the sake of brevity, we adopt the following notation: 
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.  

 

Assuming a purely radial ( 0u  ) steady flow in a cylindrical layer
1 2R r R  , when

2 1bI   , we 

obtain from (12) the following result for the pressure distribution: 

 

    2 1radP r P f r     . (13) 

 

For specific values of the Reynolds number Re , which is a parameter of the differential equation 

(6), the form of the general solution (7) changes. In this case, expressions (11) and (12) for the 

distributions of the azimuthal component of velocity and pressure also become different. Let us 

analyze the solution of the vortex flow problem for particular values of Re . 

Suppose Re 1 . In such setting equation (6) is simplified, and its general solution acquires the 

following form: 

 

    
 

 
1

1 11
2

C
u r С

r

  


.  

 

Having found the constants of integration 
 1

1C , 
 1

2C , and considering boundary conditions (8), (10), 

we arrive at the following expression for the azimuthal component of the velocity: 
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The same result can be obtained by direct substitution Re 1  into the solution (11).  

As for the pressure distribution, for this particular value of Re , after substitution (5), (14) into 

(1) and solution of the latter with consideration to the boundary condition (4), it becomes 

determined as follows:  
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If in (12) we pass to the limit with Re 1  and disclose the resulting uncertainty according to 

L'Hôpital's rule, we come precisely to the expression (15): 
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       1

Re 1
lim P r P r


    .  

 

Analogically, let us consider another particular case, when Re 2 . Substituting this value in (6), 

we obtain a slightly different form of the differential equation, the general solution of which for the 

azimuthal component of the velocity also looks different: 
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where
 2

1C , 
 2

2C  are integration constants, corresponding to Re 2 . 

Satisfying the boundary conditions (8), (10), we obtain the following expression for the 

distribution of the azimuthal velocity component: 
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Substituting (5) and (16) into (1) and considering boundary condition (4), we obtain pressure 

distribution for the concerned number Re : 
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The passage in (11) and (12) to the limit with Re 2 and the disclosure of the resulting 

uncertainties lead precisely to the just found expressions (16) и (17): 

 

       2

Re 2
lim u r u r 
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

    .  

 

In other words, the solutions corresponding to the values Re 1 and Re 2 , are contained in 

solutions (11) and (12). This is due to the fact that the form (6) for the vortex flow problem satisfies 

the theorem on the continuous dependence of the solution of the differential equation on the 

parameter; here its function is performed by the Reynolds number. 

 

4. Analysis and some features of a steady plane spiral flow 

 

First, let us note the following: having analyzed relations (5) and (11), we can see that as the 

point considered in the flow region approaches the inner boundary of the cylindrical layer, the 

azimuthal component of the velocity increases significantly. As an example, Figure 1 shows the 

nature of the change in the modulus of the ratio of the azimuthal and radial velocity components 

depending on the radial coordinate for different values of the Reynolds number: 
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1
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. (18) 

 

The influence of the parameter 2R  on the value of relation (18) depending on the Reynolds number 

at the exit from the cylindrical layer with 1r   is shown in the graphs in Figure 2. 
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Fig. 1. Change in the ratio between the azimuthal 

and radial velocity components depending on the 

radial coordinate with 
2 1,001bI   ; 

2 5R   and 

different values of Re : 5 (curve 1); 6 (2); 7 (3).  

 

Fig. 2. Change of the ratio between the azimuthal 

and radial velocity components at the exit from 

the cylindrical layer depending on Re  

with 
2 1,001bI    and different values of 

2R : 2 

(curve 1); 3 (2); 4 (3); 5 (4).  

 

The curves in Figures 1 and 2 show that the azimuthal component of the velocity in the 

immediate vicinity of the exit from the cylindrical layer begins to dominate over the radial 

component. In this case, for the studied sets of numerical values of the initial parameters, the 

azimuthal component of the velocity at the exit from the cylindrical layer can exceed the radial 

component by an order of magnitude or more. 

Note that precisely this type of correspondence between the velocity components, at least at the 

qualitative level, is characteristic of real natural vortex currents in the atmosphere, such as 

sandstorms and tornadoes. For comparison, let us point that solution (7) known from [40] with 

2 0C   predetermines everywhere in the flow area one and the same value of ratio between 

azimuthal and radial velocity components, that is:  
 

 
constu

r

u r K
r

u r Q




 
    

 
.  

Let us consider some features of the streamline family for the obtained distribution of the 

velocity vector components (5), (11) in the vortex flow problem in the case of a steady plane spiral 

flow. In a polar coordinate system, the equation for determining streamlines can be written as 

follows: 

 

 
 

 
1

r

u rd

dr r u r

  
 
   

. (19) 

 

The boundary condition for this equation can be set as 

 

 
2r R  :      

0  , (20) 

 

where 
0  is an angle, determining the location of the initial point on the outer boundary of the 

cylindrical layer,  which a streamline is to be drawn through.   

Considering (5) and (11), taking into account the boundary condition (20), we come to the 

solution of equation (19) of the form: 

  
Re 2 Re 2

2 2 2
0 2

2 1
1 ln

(Re 2)

bI R R
r

r r
 

          
                   

. (21) 
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A distinctive feature of the velocity field of the considered steady flow is that the streamlines 

satisfying solution (21) have the shape of spirals, which allow the presence of an inflection point. In 

passing, we note that most of the known plane spiral curves (spirals of Archimedes, Fibonacci, 

logarithmic, hyperbolic, and others) do not have an inflection point. Among the few analogues, 

perhaps only the so-called spiral of the Roman rod (spiral Lituus) can be distinguished, each of the 

two branches of which also has an inflection point. 

 

 

  
Fig. 3. Streamline for a steady flow in a cylindrical layer with 2 1,001bI   , 2 5R  , 0 0   for Re 4,25 , 

inf 1R   (a) and for Re 7 , inf 1,813R   (b). 

 

Typical examples of two different versions of streamlines constructed in accordance with (21) 

for relatively small and sufficiently large values of the Reynolds number are shown in Figure 3. The 

main difference between the two types of streamlines presented here is as follows. For relatively 

small values of the Reynolds number, the streamline does not have an inflection point in the range 

of variation of the radial coordinate 
21 r R    (Fig. 3a). In the case of sufficiently large values of 

the Reynolds number, the streamline takes on such a shape that an inflection point appears at a 

certain value of the radial coordinate  inf 21;r R R     (Fig. 3b). 

The condition for the existence of an inflection point on an arbitrary line in a polar coordinate 

system is defined by the following differential relation: 

 

 

22

2
2 0

d d d
r r

dr dr dr

    
             

. (22) 

 

After substituting (21) into (22), we arrive at an equation for determining the radius 
infr R  of the 

circle, on which the inflection points of the streamline family are located in the considered spiral 

flow. The equation was solved numerically using the secant method. Graphs in Fig. 4 present the 

type of relation to the Reynolds number of the root of this equation defining, with consideration to 

(21), an inflection point position on streamline.   

In the range of values of the radial coordinate 
inf 2R r R    , streamline monotonically moves 

away from the radial axis. By contrast, after the passing of the inflection point in the range of 

inf1 r R    the streamline deviates in the other direction and begins to twist around the axis of 

symmetry up to the exit through the inner boundary of the cylindrical layer. 

Figure 5 shows the pressure distributions in a small vicinity of the exit from the cylindrical layer 

with 2 1,01bI    and 2P  50, calculated by the formula (12) and referred to corresponding pressure 

distribution (13) in the case of a purely radial flow (
2 1bI   ): 

 

      p radr P r P r       . (23) 

 

b a 
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Fig. 4. Influence of the Reynolds number value 

on streamline inflection point  with
2 1,001bI    

and different values of
2R : 3 (curve 1); 7 (2); 11 

(3). 

Fig. 5. Dependence of the relation (23) on the 

radial coordinate with
2 3,6R   and different 

values of the Reynolds number Re : 6,2 (кривая 

1); 6,4 (2); 6,6 (3). 

 

From the analysis of the dependences shown in Fig. 5, it follows that in a plane spiral flow, the 

pressure in a rather small vicinity of the exit from the cylindrical layer takes on lower values 

compared to the same pressure in a purely radial flow. 

Considering the above mentioned specific feature of the pressure distribution in a plane spiral 

flow in the vicinity of the exit from the cylindrical layer and the fulfillment of the condition 

   1 1radP P  , let us make the following assumption: it is possible that the appearance of a natural 

tornado effect is a consequence of a decrease (its reasons are not discussed here) in pressure at the 

“flow” boundary (at the conditional boundaries of the central “trunk” of the tornado) below the 

level corresponding to the pressure in a purely radial flow pattern. 

 

5. An alternative way of the notation of the second boundary condition for the azimuthal 

component of the velocity 

 

It should be noted that the formulation of the boundary condition in the form (9) for the second 

invariant of the strain rate tensor is not traditional. This is due to the fact that the characteristic is, 

generally speaking, not entirely convenient from the point of view of its direct experimental 

determination and subsequent use. In this regard, let us consider a formally different, though 

essentially equivalent mode of writing the second boundary condition, which, taken together with 

the boundary condition (8), would make it possible to completely determine the integration 

constants 
1C , 

2C  in (7). 

As follows from the behavior of function (23), a distinctive feature of a plane spiral flow is that 

the pressure   11P P   at the exit from the cylindrical layer takes on values less than the values 

obtained with other parameters being equal in the problem of purely radial flow. In this setting, 

pressure
1P , defined from (12) at the exit from the cylindrical layer, is, in fact, determined by means 

of setting the value
2bI   at the entrance to the layer. In other words, there is a one-to-one 

correspondence between these quantities. In this concern, instead of a boundary condition (10) for a 

derivative of the function u
  along the radial coordinate at the entrance to the cylindrical layer, it is 

recommended to accept for pressure, but at the exit from the cylindrical layer, the following 

condition: 

 

 1r  :      1P P  . (24) 
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Here, naturally, it is assumed that
1P  is a given value that satisfies the condition  1 1radP P  . Note 

also that (24) in this case is already, along with (4), the second boundary condition for pressure, 

despite the fact that differential equation (1) with respect to the function  P r  has only the first 

order. 

Then, taking into account the new boundary condition (24), the solution of the problem of a 

steady plane spiral flow in a cylindrical layer should be carried out in the following sequence: 

- the expression for the radial velocity component is still determined by relation (5), since it follows 

from the continuity condition; 

- taking into account the boundary condition (8), expression (7) for the azimuthal component of the 

flow velocity can be worked out to the form: 

 

  
Re 2

1 21
C R

u r
r r



  
          

; (25) 

 

- substitution of (5) and (25) into (1) and subsequent integration taking into account the boundary 

condition (4) leads to the following expression for the pressure distribution: 

 

        
 

 
Re 2 2Re 4

2 2 2
2 1 1 1 2 3

4

Re Re 1

R R
P r P f r С f r f r f r

    
               

  
, (26) 

 

which, as expected, coincides structurally with (12);  

- in accordance with the boundary condition (24), from (26) we derive the formula for determining 

the last unknown constant: 

 

 
    

         
2 1 1

1 Re 2 Re 4

1 2 2 2 3

1 Re Re 1

Re Re 1 1 4 Re 1 1 Re 1

P P f
C

f R f R f 

     
 

          
.  

 

Thus, despite being alternative, the version of the second boundary condition in the form of (24) 

turns out to be equivalent to the boundary condition of the form (9) for determining the azimuthal 

component of the velocity. This is, as noted above, due to the fact that there is a one-to-one 

correspondence between the values
2bI   and 

1P .  

In view of the last assertion, condition  1 1radP P   leads directly to: 
2 1bI   , in the case of which 

boundary condition (10) makes sense. Indeed, considering (5), (25) and taking into account the 

boundary condition (8), we immediately obtain: 

 

  
 

22

1

2 2 2

Re 2
1 1

4
b

C
I R I


      .  

 

The condition accepted in the problem    11 1radP P P     puts a restriction on the realization of 

a vortex flow in a cylindrical layer with a radial fluid supply through the outer surface: in order to 

make it possible, it is necessary to ensure the pressure at the exit of the layer below the level, which 

would take place here in the case of a purely radial flow with the same pressure value at the 

entrance to the layer. In its turn, to determine the value of
1P  (already beyond the scope of the given 

model problem), it would apparently be necessary to solve the vortex flow problem in a conjugate 

formulation and taking into account the three-dimensional nature of the fluid flow, including that in 

the interior area, where 1r  .  
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6. Conclusion 

 

The problem of a plane flow of the vortex flow type in a cylindrical layer has been considered. 

The assumption is that the fluid is supplied normally (radially) to the layer through its outer surface. 

As a basis, we have taken the general solution for the azimuthal component of the current velocity 

in unlimited space, obtained earlier in [40]. The final determination of the constants of integration 

of the known general solution as applied to the problem under discussion requires the formulation 

of two boundary conditions for the azimuthal component of the velocity. In such case, the form of 

at least one of them is not obvious. It has been suggested that such a boundary condition be 

represented in the form of a requirement to provide a given value of the second invariant of the 

strain rate tensor at the entrance to the cylindrical layer. As a result, this makes it possible to write 

down the exact solution of the problem under consideration, from which it follows, that even at very 

small excesses by the dimensionless parameter 
2bI  , characterizing the value of the second invariant 

of the strain rate tensor at the entrance to the flow region, of threshold level 
2 1bI   , a steady flow 

with streamlines such as plane spirals can be realized. It is shown that streamlines can have an 

inflection point. 

Based on the obtained expression for the pressure distribution, it is shown that in the vicinity of 

the exit from the cylindrical layer, the pressure in the fluid takes values lower than in a purely radial 

flow. In view of this result, an alternative version of recording the second boundary condition is 

proposed for determining the azimuthal component of the velocity, which should be set for the 

pressure value at the exit of the cylindrical layer. Some consequences arising from the analysis of the 

considered vortex flow scheme, in the first approximation, may be of interest in modeling the 

corresponding hydrodynamic effects, such as a tornado or swirling flow in the vicinity of the drain 

hole. In this case, the results of the two-dimensional model problem solved in this work should be 

interpreted as the first approximation to the description of a more complex three-dimensional flow. In 

question here is a flow in a transverse (with respect to Oz axis of symmetry of a cylindrical coordinate 

system) section, provided that in the vicinity of this section the velocity components and pressure are 

weakly dependent on the z  coordinate. 
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