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An important property of constitutive models is the stability of the response change histories obtained 

under various perturbations of an input data (history of influences and initial conditions) and a model 

operator. It is associated with the stochastic nature of material properties at different structural-scale 

levels and thermomechanical influences. Stability analysis is especially significant to justify the 

applicability of new constitutive models for describing modern technological processes, for instance, 

those focused on the design of novel functional materials. Multilevel physically-oriented constitutive 

models of materials hold the most promise for solving such problems. They are able to provide an explicit 

description of the inelastic deformation mechanisms, the material structure rebuilding and the changes in 

the physical and mechanical properties of the material determined by its state. The approach developed by 

the authors and described in detail in the paper in the previous issue of the journal made it possible to 

evaluate the stability of multilevel constitutive material models under various perturbations of the initial 

conditions, the history of influences, and parametric operator perturbations. It includes the analysis of the 

norms of their deviations and the integral norm of deviation of perturbed solutions from the basic ones 

obtained in calculations with unperturbed parameters. In this paper, the application of the proposed 

approach has been illustrated by studying the two-level constitutive model of the FCC polycrystal. The 

obtained results demonstrate the stability of this model to the calculated perturbations. 
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1. Introduction 

 

In recent decades, a multilevel approach to the construction of constitutive models (CMs) for 

metals and alloys, based on the introduction of internal variables (IV) and physical theories of 

plasticity, has been intensively developed [1–7]. These models give the possibility to explicitly 

describe the material structure evolution and changes in the physical and mechanical 

macroproperties (including anisotropic) of materials, as well as the mechanisms responsible for 

deformation of these materials. Therefore, they are frequently used to investigate and improve the 

metal processing and forming techniques, as well as to solve the problems aimed at developing new 

functional materials.  

In multilevel models [8, 9], memory characteristics of inelastically deformed solids are taken 

into account by introducing IVs. Besides, the application of IVs that characterize the current state of 

the structure and implementation of any deformation mechanisms at different structural-scale level 

[5, 10, 11] makes it possible to avoid the use of sophisticated integral operators with properties 

similar to material memory characteristics (the memory is stored in the values of IVs). So, the 

multilevel CMs of this type are, in the general case, the algorithmic operator equations, involving 

systems of differential and/or tensor-algebraic equations [5, 10, 11–16]. When the structure 

evolution, main deformation mechanisms and interactions between these mechanisms are properly 

described, the models (and submodels introduced to characterize changes in individual structural 

elements and specific deformation mechanisms) demonstrate significant versatility, which provides 

a wide range of their applications. Since many mechanisms in deformable solids are realized and 

interact at various structural-scale levels, the versatility of CMs, in particular, their efficiency under 

various loading conditions, including complex loading, can be achieved by introducing a large 

number of IVs and kinetic (as a rule, nonlinear) equations. 

An arbitrary mathematical model can be represented as an operator that allows to find the output 

data (solution) by employing the input data that contains, in the general case, time-varying 

influences on the object of research and initial conditions [17]. An essential attribute of the analysis 
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of complex models involves examining the stability of the solutions obtained using these models in 

relation to input and operator perturbations. The relevance of these manipulations for CMs is due to 

the fact that both material properties (distributed over the construction at different structural-scale 

levels)and influences (distributed over the examined area and its boundaries) produced by stochastic 

boundary conditions are of stochastic nature. 

The analysis of stability is often associated with the need for assessment of the sensitivity of the 

CM response to the parameters that characterize the physical and mechanical properties of the 

material [18-22]. It is expedient for the CM identification procedure [23-26]: if there is high 

sensitivity to material parameters (weakly perturbed at the values established during the 

identification procedure), then the domain of their definition seems to be revised with regard to 

physical considerations. The results of the analysis of sensitivity of the multilevel CM response to 

the perturbations of some parameters, in particular, the values of constants used in kinetic equations 

and the initial values of internal variables, previously obtained by the authors, are discussed in [27]. 

Note that the analysis of sensitivity can be considered a special case of the analyzing the stability of 

the model under parametric perturbations of the CM operator [28]. 

In [28], describing an approach to the numerical assessment of the stability of multilevel 

constitutive models of inelastic behavior of metals and alloys, the analysis of the mathematical 

structure of multilevel CMs, represented as a system of ordinary differential and algebraic equations 

with an algebraic definition of the right-hand part, is considered. It was shown that, although the 

Lyapunov’s methods are successfully applied for solving different partial stability analysis 

problems (e.g., in [34-37]), there are seemingly insurmountable difficulties associated with high 

nonlinearity and dimensionality of systems equations in applying these methods to multilevel CMs. 

The authors of [28] formulated a generalized definition of stability of the solution which, unlike the 

traditional one, takes into account perturbations of history of influences and the parametric 

perturbations of operator; a program of computational experiments to implement the proposed 

approach is also presented, which includes the assignment of various perturbations of the initial 

conditions, history of influences and operator and the calculation of the norms of deviation of the 

perturbed solutions from the base ones. The procedure for assessing the stability of the model is 

understood as the analysis of the stability of solutions for different values of the parameters 

(determined in multiple subsets of the domain of their definition) that specify the operator and input 

data (initial conditions and influences), i.e., consideration of some problems of assessment of the 

local stability of the model. If the unstable solution (mathematically induced instability) is 

established, then it is necessary to clarify whether the mathematically induced instability is 

physically induced [28]. 

In this paper, the application of the proposed approach is demonstrated by the case of studying a 

two-level constitutive model for describing the deformation of a FCC polycrystal. Section 2 

contains the correlations for the constitutive model. Section 3 describes a program for the numerical 

implementation of the approach step by step and analyzes the results obtained.  

 

2. Two-level constitutive model of the FCC polycrystal 

 

In two-level statistical models based on theories of crystal plasticity, a sample of crystallites, the 

deformation of which is assumed to be homogeneous, is associated with a representative volume of 

a polycrystalline material at the macrolevel [5, 38–40]. At present, statistical models are mainly 

used for modeling of technological processes of thermomechanical treatment due to the fact that 

self-consistent [4, 41] and direct models, implying the determination of inhomogeneous fields at the 

meso-level [2,3], are much more resource-intensive.  

The system of equations at a macroscale level can be written as (hereinafter, the macroscale 

quantities are denoted by capital letters, and similar quantities of a meso-level, i.e., a crystallite 

level, by the same lower-case letters; to shorten the notation, the crystallite index is omitted) 

 

  cor in: ,d dt       K K Ω K K Ω П L Ω Z  1 (1) 
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The constitutive equation (1)1 is expressed in terms of the current configuration; K  is the 

weighted Kirchhoff stress tensor at the macrolevel; 
ο

ˆρ ρ K Σ , where   stands for averaging 

over a representative macro volume, Σ  is the Cauchy stress tensor at the macro level; 
ο

ˆρ ρ  is the 

density ratio in the initial and current configurations for the crystallites included in the 

representative macro level volume (according to the Taylor hypothesis, 
ο

ˆρ ρ  ratios are equal in all 

crystallites); cor d dt    K K Ω K K Ω  is the corotational rate of change of the weighted 

Kirchhoff stress tensor, which is independent of choice of reference frame; the kinematic influence 

is set by the velocity gradient at the macro level, 
Tˆ L V . 

During the procedure of averaging over the representative macrovolume (the average by the 

sample of crystallites), the moving coordinate system spin tensor Ω  (relation (1)2) and the elastic 

property tensor П  (relation (1)3) are transferred from the mesolevel model to the macrolevel. The 

inelastic strain rate tensor inZ  is determined in terms of the meso-level model via matching the 

macro level and meso-level constitutive relation [42] (to ensure the equality of macrostresses and 

averaged mesostresses: K κ ); a  is the deviation of the tensor characteristic a  for an individual 

crystallite from the mean (for the representative macrovolume) value;   a a a  (the averaging 

operation has the property  a 0  for each a ). 

The structure of the model (1) reflects the capabilities of multilevel models for considering 

macrolevel parameters as effective quantities that integrally characterize the deformation processes 

realized at the mesolevel. In particular, the issue of determining the corotational derivative is 

resolved which is important in constructing models for describing technological processes with 

large velocity gradients (geometric nonlinearity) [43–49]. For this purpose, it is essential to get 

information on the moving coordinate systems of individual crystallites, which are connected with 

the symmetry elements of crystallites [5]. Note that a change in the material symmetry at the 

macrolevel due to texture formation does not require constitutive model refinement. In [50–52], the 

application of the proposed approach to formulating geometrically nonlinear relations was justified. 

It was shown that, at small elastic deformations characteristic of metals and alloys, the model gives 

results close to those obtained in alternative mesoscale models, including the most popular form of 

constitutive relations in terms of the unloaded configuration (see [2, 4, 53], etc.). Meanwhile, the 

rate-type CMs in the actual configuration are more adapted to numerical methods for solving 

boundary value problems used to study thermomechanical processes; the configuration of the 

computational domain, including the contact surfaces with the tool, needs to be redefined. Another 

advantage of this formulation is the possibility of an additive decomposition of the inelastic strain 

rate into contributions of various mechanisms, which greatly facilitates the development of the 

corresponding CMs. Examples of the constitutive models proposed by the authors of this work for 

studying, in particular, grain boundary sliding effects are given in [5, 54, 55]. 

For each crystallite, we use the meso-level system of equations (to shorten the writing of 

formulas, the crystallite index is omitted) [5] 

 

 
cor ( ) ( ) ( )

=1

– : – – γ ,
K

k k k

k

d dt
 

      
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   TEquations for determi  ning    ω ω o o ω  5 

 

In (2), 
ο

ˆρ ρ
 

  
 

κ σ  is the weighted Kirchhoff stress tensor at the meso-level, where σ  is the 

Cauchy stress tensor at the meso-level; ω  is the spin of a moving coordinate system related to the 

lattice [50]; п  is the elastic property tensor (its components are constant in the moving coordinate 

system); 
T̂l = v  is the velocity gradient (according to the Taylor hypothesis, 

T Tˆ ˆ  l = v V L , 

where 
T̂V  is taken at the macro level); ( )γ k , ( ) ( ), k kb n  are the shear rates, unit vectors of slip 

direction and slip plane normal (in the actual configuration) of edge dislocations for the slip system 

k ; K  is the number of crystallographic slip systems (a doubled number of slip systems 24K   is 

used for FCC lattice). The dot above the symbol denotes the time derivative of the corresponding 

quantity. The inelastic strain rate tensor is defined at the meso-level as in ( ) ( ) ( )

=1

γ
K

k k k

k

z b n .  

The values ( )γ k  on the slip systems are calculated using the viscoplastic relationship (2)2, where 
( )τ k , ( )

cτ k  are, respectively, shear and critical shear stresses for the slip system k ; 
0γ  is the shear rate 

for the slip system k  when the shear stress reaches its critical value; m  is the strain rate sensitivity 

exponent; ( )Н    is the Heaviside function. 

The formulation of the hardening law – kinetic equations (24) for critical shear stresses ( )τ k

c
 — has 

been the subject of many studies devoted to the development of theories of crystal plasticity (the 

approaches proposed in [56–59] are the most popular ones; a comprehensive review of papers 

published on this theme in recent decades is given in [5]). Such interest is explained by the fact that it 

is precisely these ( )τ k

c
 (internal variables) that characterize the resistance of the lattice and defect 

structure to dislocation motion. Therefore, the change of these variables must be associated with a 

change in the defect structure. Since in this article we propose to focus on the procedure for assessing 

the stability of the model, then a fairly simple and well-known hardening law of the form [53, 60] is 

used in the calculations, which can be written as  

 

  
K

( ) ( ) ( )

c

1

τ γk kl l

l

h


  σ ,    ( ) ( ) ( )

lat lat1 δkl kl lh q q h    
 

,    
 

a
( )

0 c sath 1 τ / τ
llh    , (3) 

 

where the latent hardening parameter 
latq  and its value is taken as 1.0 for coplanar slip systems and 

as 1.4 for noncoplanar slip systems (with numbers k  and l ), ( )δ kl  is the Kronecker delta, 
satτ  is the 

so-called saturation stress [53, 60], and the parameters 0h , а  are determined from the experimental 

data.  

The movable coordinate system is assocoated with the crystallographic axes [5]. In this case, the 

tensors included in the CM formulation will be indifferent for the observer in a fixed laboratory 

coordinate system, which makes it possible to follow the principle of independence of the 

constitutive relation of choice of reference frame to be fulfilled [8]. To calculate the spin (25), we 

use the following equation [50]: 
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      e e e

2 1 1 2 3 1 1 3 2 1 2 1= – – –i i        ω k k k l k k k k l k k k k l k k k  

      e e e

3 2 2 3 3 1 3 1 3 2 3– ,          k l k k k k l k k k k l k k k  (4) 

 

where 
ik  is the orthonormal basis of the moving coordinate system, the orientation of which 

relative to the fixed laboratory system is defined by the proper orthogonal tensor o , 
K

e ( ) ( ) ( )

=1

– γ k k k

k

 l l b n is the elastic component of the velocity gradient. In deriving (4), we have 

taken into account the invariance of the lattice (and, hence, of the moving coordinate system) under 

plastic deformation due to the motion of edge dislocations along the slip systems [50].  

In the numerical calculations we considered a representative volume of a polycrystal with a face-

centered cubic lattice (hereinafter referred to as an FCC polycrystal) using a statistical model. The 

volume included a sample of 343 crystallites, the initial orientations of which were distributed 

randomly according to a uniform law. The nominal properties of the polycrystal corresponded to 

those of copper. The meso-level elastic property tensor contained the following independent 

components (constant for the observer in a rigid moving coordinate system linked with the lattice): 

1111п 168,4  GPа, 
1122п 121,4  GPа, 

1212п 75,4  GPа [61]; the viscoplastic relationship included 

0γ 0,001  с
–1

, 1 m 0,012 ; the hardening law parameters were 
0h 180  MPа, a 2,25 , 

satτ 148  MPа, and the initial values of critical stresses for all slip systems were ( )

c c0τ (0) τ 16k    

MPа ( 1, ...,k K ) [53, 60].  

The CM given above was represented as a system of algebraic and ordinary differential 

equations. Due to the significant nonlinearity of the system of equations, in particular, the presence 

of the Heaviside function in the viscoplastic law (2)2 (which led to the necessity of discretization 

with a small time step to trace the activity of slip systems in crystallites; in the calculations, the time 

step was 0.002 s), these equations were integrated using an explicit Euler method. 

Figure 1 shows the dependences of the components 
33( Σ )  and 

23( Σ ) in the orthonormal 

laboratory coordinate system (LCS) with a basis 
ip  (where 1,3i  ) of the Cauchy stress tensor at 

the macrolevel on the logarithmic strain component 
33)H  under uniaxial compression and on the 

shear value under simple shear, respectively. Note that, although the parameters used in the 

calculations were determined during their identification in compression phase [60], the results of 

changes in shear stresses at simple shear (used for verification) were found to be in good agreement 

with the experimental data. 

 

  

Fig.1. Dependence of 33( Σ )  on 33H  under uniaxial compression (a) and dependence of 23( Σ ) on shear 

value under simple shear (b); dots are the experimental data from [60], and solid line are the results 

obtained using the proposed model.  

 

The paper [27] presents the results illustrating the application of the proposed CM for describing 

simple and complex loading modes and the estimates of its sensitivity to the perturbations of some 

а b 
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characteristics: viscoplastic law parameters 
0γ , m ; hardening law parameters 

0h , a , 
satτ ; initial 

values of critical stresses for all slip systems c0τ . The data obtained indicate the stability of CMs 

with respect to changes in these parameters. The parameters were ranked according to their degree 

of sensitivity; it was found that the deviation of the parameter 
satτ  has the greatest effect on the 

output data. 

On the basis of the approach to the analysis of stability proposed in [28], it can be concluded that 

the study of the influence of perturbations of the initial values of critical stresses c0τ  refers to the 

case of initial conditions perturbations due to IVs, and the study of the perturbations of the 

remaining parameters – to parametric perturbations of operator. Below, we present a step-by-step 

description of the implementation of computations in accordance with the approach under 

discussion. For this purpose, we consider the CM described and evaluate a wider set of perturbed 

parameters. 

 

3. The results of application of the technique for studying the stability in relation to 

perturbations of influences and parametric perturbations of operator  

 

In the framework of the notion system from [28],  

– the vector of influence       L , =1,3 ,  0,ij t i j t T  X  is defined in terms of  Lij t –– 

components of the velocity gradient tensor in LCS; 

– the output data       Σ  , =1,3 ,  0,ij t i j t T  Y is defined in terms of  Σij t  — components 

of the macrolevel Cauchy stress tensor in LCS;  

– the vector of internal variables Z is defined as composed of the previously introduced (for each grain 

of the sample) mesostress components, components of the orientation tensor of a crystallographic 

coordinate system, shears on the slip systems and critical stresses associated with their activation (no 

information is provided on the perturbations of IV initial values because of the limited size of this paper; 

some data can be found in [27]).   

Numerical implementation of the approach to studying the stability of CMs under specified loads 

includes the following steps [28]:  

STEP 1. Definition of base solutions  

Base solutions are the solutions without any parameter perturbations. They were compared with 

the solutions obtained in various implementations under random perturbations of some parameters 

(according to the prescribed program of numerical experiments, see STEP 3); other parameters were 

not perturbed.  

As base solutions, the solutions obtained for the representative volume under the following 

isothermal rigid loading modes were considered: 

1) Kinematic loading with the velocity gradient     1 1 2 2 3 32t     L p p p p p p . The base 

solutions determined using CMs for some perturbations are given in Fig.4. Note that, in [60] this 

loading was applied to a statistic CM as an approximation of uniaxial compression (for the sake of 

shortness, we call it “quasi-compression”).  

2) Simple shear   2 3t   L p p . 

In both rigid loading modes,    s
–1

, and the deformation develops in the time interval 

0 t T  , where T  s. 

STEP 2. Setting the influence and operator perturbations 

The paper [27] presents the results of a study of the sensitivity of the response to changes in the 

numerical values of some characteristics of the operator (the viscoplastic law parameters and 

hardening law parameters) and in the initial conditions (the initial values of critical shear stresses in 

slip systems). The data obtained indicate the response resistance to the corresponding perturbations. 



A.I. Shveykin et al. Computational Continuum Mechanics. 2021. Vol. 14. No. 2. pp. 127-143 DOI: 10.7242/1999-6691/2021.14.2.11 

133 

Further, it seems reasonable to analyze the response stability with respect to the perturbation of 

influences, as well as to another type of the parametric perturbations of the operator. 

STEP 2.1. Perturbation of influences 

The possibility of the appearance of kinematic disturbances for a representative volume is due to 

the fact that during the manufacture of products (or during the experiments), the influences 

(determined by the boundary conditions of the structure), are not always known with sufficient 

accuracy. The following perturbed influences are considered: 

– for quasi-compression 

 

  
 

      1 1 1 2 2 3 3 2 3*
2

t
t t t


  

 
       
 

L p p p p p p p p ; (5) 

 

– for shear 

  
 

    2 1 1 2 2 3 3 2 3* )
2

t
t t t

 
  

 
        
 

L p p p p p p p p . (6) 

Coincidence of the perturbed influence with the base one corresponds to  t  . The function 

 t  that specifies the current “perturbed” strain rate was set in such a way as to provide the 

“sawtooth” (with random duration and burst height) changes in the components  * tL  relative to 

the components  tL . The duration of the bursts produced alternatively “up” and “down” (с 

 t   and  t   , respectively) was determined randomly by using a uniform distribution 

law in the interval from 0 to 10 sec and approximated to a value corresponding to as many steps as 

necessary for the time integration of the CM. The peak value 
max  was  _ max1 L     for the odd 

bursts and  _ max1 L    for the even bursts, where   is the random value of a uniform 

distribution for the segment [0,1], 
_ maxL  is the range of relative variability of the parameter for the 

current computational experiment. At the beginning time of burst 
startt , no perturbations occured: 

 startt  . The current value   was taken so that it could change linearly and reach 
max  in the 

middle of the burst and return lineraly to    at the end of the burst.  

 

  

   

Fig.2. Changes of the nontrivial components  * tL in the randomly selected implementations of computational 

experiments under the perturbations of influences for quasi-compression (a) and for simple shear (b);

_ maxL  . 

 

а b 1 

2 

3 1 

2 

1 2 1 2 3 
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Figure 2 presents the changes in the components of the tensor  * tL in the LCS obtained 

according to (5) and (6) for some implementations of the computational experiments at 

_ maxL    

STEP2.2. Operator perturbation  

For the parametric perturbation of the operator, the deviations of the critical shear stresses on slip 

systems at different times after the initial one were specified. The relevance of this study is due to 

the fact that some physical processes are stochastic in nature, e.g., the interactions between defect 

structures at microscale levels, which were taken into account in an effective way in CMs in terms 

of critical shear stresses forf individual crystallites at the meso-scale (a review of approaches to the 

formulation of hardening relations is provided in [5]). The practical application of the definition of 

stability introduced in [28] leads to the problem of calculating the deviation norm of an operator. 

Due to significant nonlinearity and high dimensionality of the CM, this norm cannot be found 

analytically, and there are no methods for its numerical calculation; if such a method exists, then its 

implementation would present a difficulty to researchers because of huge resource intensity.  

In the numerical procedure for estimating stability, we used a norm for the perturbed parameters 

of operator  
2

0, St T
Q


Λ . If only critical stresses are disturbed, then we get S NK , where N  is the 

number of grains, K  is the number of crystallographic slip systems (as shown above, 343N  , 

24K  ), and the norm takes the form [28]: 

 

    
2

1 2

2

0,

0

( )
S

T

ct T
Q

t dt


 
  
 
Λ , (7) 

 

where  
2

( )c t  is the squared critical shear stress averaged over all K  slip systems in all N  

crystallites from the sample for the corresponding representative volume. The norm of deviation of 

operator parameters is defined as  

         
2

1 2

2*

0, 0,

0

*
S

T

c ct T t T
Q

t t dt 
 

 
    

 
Λ Λ , (8) 

 

where     
2

*c ct t   is the squared deviation of the critical stresses in the current 

implementation (averaged over all K  slip systems in all N  crystallites) from those obtained in the 

base solution. Transition to (8) for characterizing operator deviations suggests sufficient smoothness 

of the nonlinear operator of the CM in the vicinity of the solution under study. 

The critical stress perturbation was realized in such a way as to provide a “sawtooth” change in 

the critical stresses in the current implementation  *c t  with respect to  c t , i.e., a change 

with random duration and burst height. The duration of bursts produced alternatively “up” and 

“down” was determined randomly by using a uniform distribution law in the interval from 0 to 10 

sec. The peak deviation of mean critical stresses, which must be achieved at the burst during the 

perturbed and nonperturbed calculations, was specified as   _ maxc startt       , where 

 c startt  are the average stresses in the base solution at the starting time of burst 
startt ,   is the 

random value from the uniform law of distribution over the segment [0,1], 
_ max  is the range of 

relative variability of the parameter from the computational experiment. No perturbation was 

observed at the instant of time 
startt . 

In the implementation of odd bursts at all steps of the CM integration, the critical stresses for all 

slip systems of all crystallites (after the CM integration procedure at the time step) increased further 
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with the same factor so that the deviation of the average critical stresses in the “perturbed” 

calculation from the values in the basic calculation increased linearly and reached a peak in the 

middle of the burst. After the peak, the uniform compression of the yield surface was carried out 

until the average critical stresses in the perturbed solution were equalized with the values obtained 

in the basic calculation. For even bursts, the compression and subsequent tension of the yield 

surface were set in a similar way.  

 

Generally speaking, the stress and yield surface 

parameters cannot be considered as independent 

parameters in plasticity models. For example, when 

the size of the yield polyhedron (there are stresses in 

the stress space on the polyhedron surface) reduces, 

it is necessary to correspondingly reduce stresses 

(the “return mapping” technique often used in 

numerical procedures for solving plasticity 

problems); an increase in the size of the yield 

polyhedron under isothermal conditions occurs due 

to the increase in stresses. Therefore, due to critical 

stress perturbations (expansion or contraction of the 

yield surface of a crystallite), mesostresses also 

change, which guarantees that the state (elastic or 

inelastic) of the material will remain unchanged.  

For illustration, Figure 3 presents the calculated 

curves showing the change in the process of 

deformation of the critical stresses for the mean 

critical stresses obtained in the basic calculation and in the calculation with perturbations. Note that 

the character of the deviation of the mean critical stresses (Fig. 3) is more complicated than that of 

the impact parameters (Fig. 2). This can be explained by the fact that the critical stresses are the IVs 

of the problem, and the magnitude of this deviation from the basic solution is determined not only 

by the prescribed perturbation law, but also depends on the values of the perturbed IV established at 

the time of perturbation, according to the relations of the CM itself. 

STEP 3 Schedule of numerical experiments 

For implementing the model under basic loads (STEP 1), the above-described perturbations of 

influences and operator (STEP 2) were realized at different ranges of relative variability of the 

parameters 
_ maxL ,

_ max , according to the calculation schedule given in Table 1. 

Table 1. Schedule of computational expriments. 

№ Type of experiment № Type of experiment  

1 
Quasi-compression with perturbation 

 tL  
4 Shear with perturbation  tL  

2 
Quasi-compression with perturbation 

 c t  
5 Shear with perturbation  c t  

3 
Quasi-compression with perturbation 

and  tL , and  c t  
6 

Shear with perturbation and  tL ,and 

 c t  

 

STEP 4 Implementation of computational experiments 

For each type of the computational experiments (Table 1), 3 series of 50 calculations were 

carried out with random realization of perturbations in each, and every series referred to certain 

 
 

Fig.3. Change in the mean critical stresses in 

the base calculation with perturbations 

(randomly selected implementation) at simple 

shear, _ max  . 
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ranges of relative variability of the parameters 
_ maxL ,

_ max . The results of the calculations with 

perturbations are denoted by the symbol ‘*’. Figures 4, 5 present examples that illustrate some of 

the results of separate computational experiments. Table 2 contains the statistical information 

obtained after processing a set of results from all implementations.  

Figure 4 gives the time curves of largest modulus components of the macrostress tensor 

constructed using the results of the basic calculations and calculations with perturbations 

(implementation is taken randomly).  

 

 
 

 

  

Fig.4. Time variation of the components of the macrostress tensor in the second-type computational 

experiments with 
_ max 0L  , 

_ max 0,05   (critical stress perturbations at quasi-compression) (а) and in the 

forth-type expriments with _ max 0,05L  , 
_ max 0   (pertrurabations of kinematic influences at shear) (b). 

 

It can be seen from Figure 4 that the perturbed solution is close to the basic one for the 

perturbations under consideration. In addition, it should be noted that the pole figures obtained in 

the basic solutions and in the solutions with perturbations are visually almost the same. When 

critical stresses are perturbed in accordance with the accepted variation law, the changes in all 

components of the macrostress tensor are significant (Fig. 4a). It is interesting that in the 

calculations with kinematic influence perturbation (deformation trajectories), the values of the 

dominant component of the stress tensor are close to the values obtained in the basic calculation 

(Figure 4b shows that the deviations practically coincide). This can be associated with the 

description of the mesostress evolution in the CM: with the adopted exponent m 83,3  in the 

viscoplastic law under active loading, the mesostresses (deviator) are near the surface of the yield 

polyhedron, which is determined by the Schmid criterion [5, 62]. For the perturbations under study, 

the deformation trajectory remains close to the baseline, and therefore the stress in the stress space 

for crystallites tends to move in the direction corresponding to an increase in the dominant stress 

component. At the initial stage, the stresses are located near the faces of the crystallite yield surface 

(i.e., a convex polyhedron [5]) and the maximum of this stress deviator component is in 

correspondence with it. During subsequent loading, the yield surface transforms: it expands in the 

direction of an increase in the dominant component of the stress deviator together with the 

displacement of the stress in the stress space. Since the values of the maximum accumulated 

deformation for the dominant component, corresponding to the basic and perturbed options, are 

close, so the changes in the yield surfaces in this direction for the base and perturbed modes will 

differ only slightly, which will result in the proximity of the obtained values of the dominant 

component. At the same time, the face of the yield surface with the maximum value of the dominant 

stress deviator component can be practically normal to the direction in which the stresses increase, 

and the perturbations of kinematic influences will manifest themselves in the movement of the 

stress along this face of the yield surface.  

а b 1 

2 

3 

4 

3 

4 

1 

2 

1 2 3 4 1 2 3 4 

1 

2 
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Figure 5 shows typical time dependences of the mesostress tensor components for an individual 

crystallite, which were plotted based on the same calculated data as those from Fig. 4b. Note that, 

for the nondominant stress components, the deviations at the macrolevel are smaller due to the 

averaging of mesostresses over a sufficiently large number (343) of crystallites. 

We have calculated the values of the norms [28] : 

– deviations of the history of influences    
2

0, 0,
*

mt T t T
Q

 
X X , the norm is defined by Riemann integral 

    
2

1 2
T

2

0,

0

m

m

it T
Q

i

X t dt




 
  
 
X  in the space  2 0,

m

t T
Q

 
 of the piecewise continuous vector functions 

of the dimension m  at  0,t T   [63], in the 

calculation performed here 9m   (number 

of the components L ); 

– deviations of the operator parameter 

according to (8);  

– deviations of the solutions 

2
[0, ] [0, ] C

*
n

L

t T t T Y Y , the norm is also 

defined by Riemann integral, but in the 

space 2L
Cn

 of the continuous vector 

functions of the dimension n at  0,t T  ; 

in the calculations 9n   (the number of 

the macrostress tensor components Σ ). 

We note that, in the general case of the 

analysis of different types of influences, 

operator parameters, IVs and response, it is necessary to introduce the vectors ( , , ,X Λ Z Y ) with 

subsequent nondimensionalization of the components into characteristic values. In the case under 

study, due to the uniformity of the components of these vectors, the necessity to do this is absent.  

 According to the definition formulated in [28], the base solution will be stable if, for any 0  , 

there are such (defined in the corresponding normalized spaces) neighborhoods of the initial 

conditions, influences, and operator parameters that (while finding the corresponding perturbed 

characteristics) the solutions established in terms of the model will be located in the  -

neighborhood of the basic solution.  

 The stability of the model can be assessed by checking the stability of solutions for different 

values of the parameters (taken from different subsets of the domain of definition) used to specify 

the operator and input data (initial conditions and influences) [28]. This article does not present the 

results of a study of perturbations of the initial conditions. Our previous paper [27] contains the 

results which confirm the stability of CMs to the perturbations of initial the conditions. 

STEP 5. Analysis of the fulfilment of requirements referring to the definition of stability for each 

basic solution on the set of calculated data  

Table 2 contains relative estimates for the norms 
   

 

2

2

.0, 0,

0,

*
m

m

обt T t T
Q

t T
Q

 





 X

X X

X
, 

   

 

2

2

*

.0, 0,

0,

S

S

обt T t T
Q

t T
Q

 





 Λ

Λ Λ

Λ
 and 

   

 

2

2

0, 0, .C

0,
C

*
n

L

n

L

t T t T об

t T

 





 Y

Y Y

Y
, which were found in different 

implementations of the computational experiments. For short, these are called relative norms. For 

the numerical expriments No 3 and No 6, we assumed that 
_ max _ maxL   , and therefore, to denote 

 

 
Fig.5. Time variation of the components of the 

crystallite mesostress tensor during implementation 

No.1 in the forth-type expriment with 
_ max 0,05L  . 
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the range of their relative variability, further we introduce the same notion,   , further for all 

parameters. For each   ( 0,01; 0,03; 0,05   ), 50 points are plotted on all curves (150 points in 

all); every point corresponds to the implementation of one computational experiment for which 

 
*

0,t T
X ,  

*

0,t T
Λ ,  

*

0,t T
Y  are defined to calculate the above mentioned norms. Note that, in the 

CM, the evolution of IVs is shown for 343 grains; some particular results are given in Figures 4 and 

5. 

Strictly speaking, the norm of deviation of the parameters of operator (8) under the perturbations 

of influences is not an estimate of the norm of deviation of the operator [28]. In this case, the 

nonperturbed and perturbed critical stresses are investigated for different input data (with different 

histories of influences). However, it seems necessary to consider joint perturbations in the analysis 

of stability; the norm (8) can be interpreted literally as an integral assessment of the deviations of 

the history of changes in the IVs obtained by the CM. If the smaller Λ
are in the correspondence 

with the smaller Y
, then this can be regarded as indirect evidence of the stability of the solution 

with respect to the investigated perturbations of operator.  

The results shown in Table 2 can be represented as the dependences of the relative deviation of 

the response on the relative deviation of the history of influences and the relative deviation of 

operator. For illustration, the corresponding data obtained in the series of experiments No. 6 are 

given in Fig.6. 

Based on the results of the calculations, we can suggest that the CM has a noticeable sensitivity 

to the perturbations of both kinematic influences and critical stresses, which requires careful 

consideration of the issues related to describing geometric nonlinearity and formulating hardening 

laws (kinetic equations for critical stresses). Note that the joint perturbation of parameters leads 

(according to the average estimate) to a greater deviation of the response. 

 

Table 2. Numerical estimates for relative norms at different parameters of the relative perturbation  (mathematical 

expectation and standard deviation of relative norms). 

X
 Λ

 Y
 

1st type experiments: quasi-compression with perturbation  tL  

 

М 

5,27∙1

0
-3 

1,59∙1

0
-2

 

2,63∙1

0
-2

 

S 

1,17∙1

0
-4

 

4,08∙1

0
-4

 

5,48∙1

0
-4

 
 

ignored   

М 

8,36∙1

0
-3 

1,09∙1

0
-2

 

1,15∙1

0
-2

 

S 

2,53∙1

0
-3

 

3,22∙1

0
-3

 

3,8∙10
-3

 
 

2d type experiments: quasi-compression with perturbation  c t  

0  

М 

3,43∙1

0
-3 

1,05∙1

0
-2

 

1,72∙1

0
-2

 

S 

1,57∙1

0
-4

 

5,66∙1

0
-4

 

6,14∙1

0
-4

 
 

 

М 

3,44∙1

0
-3 

1,29∙1

0
-2

 

1,86∙1

0
-2

 

S 

1,53∙1

0
-4

 

1,72∙1

0
-3

 

8,48∙1

0
-4

 
 

3d type experiments: quasi-compression with perturbation and  tL , and  c t  
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М 

5,28∙1

0
-3 

1,58∙1

0
-2

 

2,62∙1

0
-2

 

S 

1,42∙1

0
-4

 

3,67∙1

0
-4

 

4,78∙1

0
-4

 
 

 

М 

4,01∙1

0
-3 

1,10∙1

0
-2

 

1,77∙1

0
-2

 

S 

4,02∙1

0
-4

 

5,22∙1

0
-4

 

8,04∙1

0
-4

 
 

 

М 

9,04∙1

0
-3 

1,12∙1

0
-2

 

2,07∙1

0
-2

 

S 

3,6∙10
-3

 

2,73∙1

0
-3

 

1,95∙1

0
-3

 
 

4th type experiments: shear with perturbation  tL  

 

М 

6,43∙1

0
-3 

1,93∙1

0
-2

 

3,22∙1

0
-2

 

S 

1,6∙10
-4

 

4,47∙1

0
-4

 

6,13∙1

0
-4

 
 

Не рассматривалось   

М 

6,56∙1

0
-3 

1,61∙1

0
-2

 

2,27∙1

0
-2

 

S 

1,9∙10
-3

 

4,96∙1

0
-3

 

5,43∙1

0
-3

 
 

5th type experiments: shear with perturbation  c t  

0  

М 

3,19∙1

0
-3 

9,6∙10
-3

 

1,56∙1

0
-2

 

S 

1,58∙1

0
-4

 

4,7∙10
-4

 

8,18∙1

0
-4

 
 

 

М 

3,19∙1

0
-3 

9,96∙1

0
-3

 

1,57∙1

0
-2

 

S 

1,55∙1

0
-4

 

4,61∙1

0
-4

 

7,88∙1

0
-4

 
 

6th type experiments: shear with perturbation and  tL , and  c t  

 

М 

6,39∙1

0
-3 

1,93∙1

0
-2

 

3,23∙1

0
-2

 

S 

1,68∙1

0
-4

 

4,4∙10
-4

 

6,05∙1

0
-4

 
 

 

М 

3,29∙1

0
-3 

9,54∙1

0
-3

 

1,62∙1

0
-2

 

S 

1,89∙1

0
-4

 4∙10
-4

 

8,98∙1

0
-4

 
 

 

М 

6,3∙10
-3 

1,82∙1

0
-2

 

2,94∙1

0
-2

 

S 

1,39∙1

0
-3

 

3,89∙1

0
-3

 

4,87∙1

0
-3

 
 

 

  

Fig.6. Change of Y in relation to X  (а) and Λ  (b), determined in the series of experiment No 6; solid 

lines show the ranges of the results obtained; as the norms of deviation of influences and operator parameters 

decrease, the norm of deviation of the response from that obtained during the base calculation also decreases.  

а b 
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The analysis of the stability of the basic solutions led to the conclusion that for small 

perturbations there occur small deviations of the solutions and this, according to the criterion [28], 

indicates the stability of the model. When the parameter perturbation range decreases, the values of 

all relative norms (influences, operator and response) also decrease. In other words, with a decrease 

in the norm of deviations of influences and a decrease in the norm of operator perturbations, the 

norm of deviations of the response also decreases, which provides evidence to the stability of the 

CM with respect to the perturbations under consideration. 

In should be noted that, for individual crystallites, the deviations of mesostresses (IVs in the CM) 

can exceed the mean values for the representative volume and can increase with time under loading 

conditions (Fig. 5). This is due to the different motion of the stress in the stress space (generated by 

the perturbation) on the yield surface; the surface subjected to anisotropic hardening is also 

transformed in a different way. However, the deviations of macrostresses observed in this case are 

much smaller due to averaging over a large number of crystallites (Fig.4b). 

It would seem necessary, in this respect, to pay attention to the effects caused by the CM 

structure and the type of applied kinematic influences. The difference in the relative norm of 

deviation of the mean critical stresses in the experiments of the second and third types (Table 2) is 

associated with the change of these stresses (indicated above) due to the perturbations of influences. 

The stress in the stress space (SSS) move on the yield surface, and the implementation of quasi-

compression requires that they move between the high-order yield surface vertices (provided that 

the Schmid criterion is fulfilled on the sixth or eighth systems [64, 65]). After the SSS reaches the 

adjacent vertex, large perturbations are required to return it to the initial point (that is the reason 

why, at the given level of perturbations, the return is rarely realized). The same effect explains the 

decrease in the dispersion of the response deviation data and the separation of the points (at some 

values of  ) into clusters in experiments of the second and third types. At shear, the tendency of 

the SSSs to high-order vertices is not necessary. For example, at a certain orientation of the 

crystallite, the shear can be realized due to the motion of dislocations in only one active slip system, 

when the SSS is on the face of the yield surface. In this situation, at relatively small perturbations, 

the SSS can easily go to the edges and/or vertices of the yield surface and then return to the initial 

position. For this reason, in Table 2, there are no significant differences in the deviation of the mean 

critical stresses in the experiments of the fifth and sixth types. 

STEP 6. Analysis of unstable solutions (if they have been established) 

In the series of the calculations carried out in this study, the instability of solutions has not been 

revealed. This is largely because of the uniformity of the distribution of crystallite orientations (the 

initial plastic properties at the macrolevel are close to isotropic); there are no pronounced edges on 

the relative yield surface at the macrolevel. At the same time, the analysis of the results from Table 

2 has revealed the presence of some points with significantly larger values of the relative norms of 

response deviations in comparison with the average values obtained in the same experiment. This is 

due to the fact that, under the prescribed perturbations of influences and model operator, a 

significant change in the response associated with a change in the motion of the SSSs on the yield 

surface was observed for a larger number of crystallites. 

 

4. Conclusion 

 

Due to the stochastic character of the properties of the material (including those at the lowest 

scale levels) and the influences produced by the boundary conditions, the analysis of the stability of 

solutions (the history of changes in responses) with respect to the perturbations of input data and the 

perturbations of operator obtained using constitutive material models is of great relevance .  

In this connection, the approach previously developed by the authors [28] was applied to 

investigate the stability of constitutive models. The study included the analysis of different 

perturbations of the initial conditions, the history of influences and the operator, as well as the 

determination of the norms of deviation of the corresponding solutions from the baseicones.  
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The results obtained for the two-level model of the polycrystalline FCC metal demonstrated the 

stability of this model and its applicability for describing technological processes of 

thermomechanical treatment.  

 

This work was supported by the Russian Science Foundation (grant No. 17-19-01292). 

 

References 
 

1. McDowell D.L. A perspective on trends in multiscale plasticity. Int. J. Plast., 2010, vol. 26, pp. 1280-1309. 

https://doi.org/10.1016/j.ijplas.2010.02.008 

2. Roters F., Eisenlohr P., Hantcherli L., Tjahjanto D.D., Bieler T.R., Raabe D. Overview of constitutive laws, kinematics, 

homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. 

Acta Materialia, 2010, vol. 58, pp. 1152-1211. https://doi.org/10.1016/j.actamat.2009.10.058 

3. Diehl M. Review and outlook: mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the 

grain scale. MRS Communications, 2017, vol. 7, pp. 735-746. https://doi.org/10.1557/mrc.2017.98 

4. Beyerlein I., Knezevic M. Review of microstructure and micromechanism-based constitutive modeling of polycrystals 

with a low-symmetry crystal structure. J. Mater. Res., 2018, vol. 33, pp. 3711-3738. 

https://doi.org/10.1557/jmr.2018.333 

5. Trusov P.V., Shveykin A.I. Mnogourovnevyye modeli mono- i polikristallicheskikh materialov: teoriya, algoritmy, 

primery primeneniya [Multilevel models of mono- and polycrystalline materials: theory, algorithms, examples of 

application]. Novosibirsk, Izd-vo SO RAN, 2019. 605 p. https://doi.org/10.15372/MULTILEVEL2019TPV 

6. Trusov P.V., Shveikin A.I., Kondratyev N.S., Yants A.Yu. Multilevel models in physical mesomechanics of metals and 

alloys: results and prospects. Phys. Mesomech., 2020, vol. 23, no. 6, pp. 33-62. https://doi.org/10.24411/1683-805X-

2020-16003 

7. Trusov P.V. Classical and multi-level constitutive models for describing the behavior of metals and alloys: Problems and 

Prospects (as a matter for discussion). Mech. Solids, 2021, vol. 56, pp. 55-64. 

https://doi.org/10.3103/S002565442101012X 

8. Truesdell C. A first course in rational continuum mechanics. USA, Maryland, Baltimore, The Johns Hopkins University, 

1972. 304 p. 

9. Astarita G., Marrucci G. Principles of non-Newtonian fluid mechanics. McGraw-Hill, 1974. 296 p. 

10. Guo Y.B., Wen Q., Horstemeyer M.F. An internal state variable plasticity-based approach to determine dynamic loading 

history effects on material property in manufacturing processes. Int. J. Mech. Sci., 2005, vol. 47, pp. 1423-1441. 

https://doi.org/10.1016/j.ijmecsci.2005.04.015 

11. Maugin G.A. The saga of internal variables of state in continuum thermos-mechanics (1893-2013). Mech. Res. Comm., 

2015, vol. 69, pp. 79-86. https://doi.org/10.1016/j.mechrescom.2015.06.009 

12. Rice J.R. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. J. 

Mech. Phys. Solid., 1971, vol. 19, pp. 433-455. https://doi.org/10.1016/0022-5096(71)90010-X 

13. Mandel J. Equations constitutives et directeurs dans les milieux plastiques et viscoplastiquest. Int. J. Solid. Struct., 1973, 

vol. 9, pp. 725-740. https://doi.org/10.1016/0020-7683(73)90120-0 

14. Aravas N. Finite elastoplastic transformations of transversely isotropic metals. Int. J. Solids Struct., 1992, vol. 29, pp. 

2137-2157. https://doi.org/10.1016/0020-7683(92)90062-X 

15. Aravas N. Finite-strain anisotropic plasticity and the plastic spin. Modelling Simul. Mater. Sci. Eng., 1994, vol. 2, pp. 

483-504. https://doi.org/10.1088/0965-0393/2/3A/005 

16. Dafalias Y.F. On multiple spins and texture development. Case study: kinematic and orthotropic hardening. Acta 

Mechanica, 1993, vol. 100, pp. 171-194. https://doi.org/10.1007/BF01174788 

17. Trusov P.V. (ed.) Vvedeniye v matematicheskoye modelirovaniye [Introduction to mathematical modeling]. Moscow, 

Logos, 2007. 440 p. 

18. Sobol’ I.M. Ob otsenke chuvstvitel’nosti nelineynykh matematicheskikh modeley [On the estimation of the sensitivity of 

nonlinear mathematical models]. Matem. modelirovaniye – Mathematical Models and Computer Simulations, 1990, vol. 

2, no. 1, pp. 112-118. 

19. Archer G.E.B., Saltelli A., Sobol I.M. Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. 

Comput. Simulat., 1997, vol. 58, pp. 99-120. https://doi.org/10.1080/00949659708811825 

20. Saltelli A., Tarantola S., Chan K.P.-S. A quantitative model-independent method for global sensitivity analysis of model 

output. Technometrics, 1999, vol. 41, pp. 39-56. https://doi.org/10.1080/00401706.1999.10485594 

21. Sobol I.M. Global sensitivity indices for the investigation of nonlinear mathematical models. Matem. modelirovaniye 

– Mathematical Models and Computer Simulations, 2005, vol. 17, no. 9, pp. 43-52. 

22. Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S. Global sensitivity 

analysis. The Primer. John Wiley & Sons Ltd., 2008. 292 p. 

23. Yang Z., Elgamal A. Application of unconstrained optimization and sensitivity analysis to calibration of a soil 

constitutive model. Int. J. Numer. Anal. Meth. Geomech., 2003, vol. 27, pp. 1277-1297. https://doi.org/10.1002/nag.320 

https://doi.org/10.1016/j.ijplas.2010.02.008
https://doi.org/10.1016/j.actamat.2009.10.058
https://doi.org/10.1557/mrc.2017.98
https://doi.org/10.1557/jmr.2018.333
https://doi.org/10.15372/MULTILEVEL2019TPV
https://doi.org/10.24411/1683-805X-2020-16003
https://doi.org/10.24411/1683-805X-2020-16003
https://doi.org/10.3103/S002565442101012X
https://doi.org/10.1016/j.ijmecsci.2005.04.015
https://doi.org/10.1016/j.mechrescom.2015.06.009
https://doi.org/10.1016/0022-5096(71)90010-X
https://doi.org/10.1016/0020-7683(73)90120-0
https://doi.org/10.1016/0020-7683(92)90062-X
https://doi.org/10.1088/0965-0393/2/3A/005
https://doi.org/10.1007/BF01174788
https://doi.org/10.1080/00949659708811825
https://doi.org/10.1080/00401706.1999.10485594
https://doi.org/10.1002/nag.320


A.I. Shveykin et al. Computational Continuum Mechanics. 2021. Vol. 14. No. 2. pp. 127-143 DOI: 10.7242/1999-6691/2021.14.2.11 

142 

24. Qu J., Xu B., Jin Q. Parameter identification method of large macro-micro coupled constitutive models based on 

identifiability analysis. CMC, 2010, vol. 20, pp. 119-157. https://doi.org/10.3970/cmc.2010.020.119 

25. Shutov A.V., Kaygorodtseva A.A. Parameter identification in elasto-plasticity: distance between parameters and impact 

of measurement errors. ZAMM, 2019, vol. 99, e201800340. https://doi.org/10.1002/zamm.201800340 

26. Kotha S., Ozturk D., Ghosh S. Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal 

plasticity FE simulations, part I: Sensitivity analysis and parameter identification for titanium alloys. Int. J. Plast., 2019, 

vol. 120, pp. 296-319. https://doi.org/10.1016/j.ijplas.2019.05.008 

27. Shveykin A.I., Sharifullina E.R., Trusov P.V., Pushkov D.A. About estimation of sensitivity of statistical multilevel 

polycrystalline metal models to parameter variations. Vychisl. mekh. splosh. sred – Computational Continuum 

Mechanics, 2018, vol. 11, no. 2, pp. 214-231. https://doi.org/10.7242/1999-6691/2018.11.2.17 

28. Shveykin A.I., Trusov P.V., Romanov K.A. An approach to numerical estimating the stability of multilevel constitutive 

models. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2021, vol. 14, no. 1, pp. 61-76. 

https://doi.org/10.7242/1999-6691/2021.14.1.6 

29. Lyapunov A.M. Obshchaya zadacha ob ustoychivosti dvizheniya [General problem of motion stability]. Moscow, 

Leningrad, Gosudarstvennoye izd-vo tekhniko-teoreticheskoy literatury, 1950. 470 p. 

30. Barbashin E.A. Vvedeniye v teoriyu ustoychivosti [Introduction to the theory of stability]. Moscow, Nauka, 1967. 223 p. 

31. Demidovich B.P. Lektsii po matematicheskoy teorii ustoychivosti [Lectures on the mathematical theory of stability]. 

Moscow, Nauka, 1967. 472 p. 

32. Berge P., Pomeau Y., Vidal C. L'ordre dans le chaos. Vers une approche déterministe de la turbulence [Order in chaos. 

On a deterministic approach to turbulence]. Hermann, Editeurs des sciences et des arts, 1988. 353 p. 

33. Lyapunov A.M. The general problem of the stability of motion. Int. J. Contr., 1992, vol. 55, pp. 531-534. 

https://doi.org/10.1080/00207179208934253 

34. Precup R.-E., Tomescu M.-L., Preitl St. Fuzzy logic control system stability analysis based on Lyapunov’s direct 

method. International Journal of Computers, Communications & Control, 2009, vol. 4, pp. 415-426. 

https://doi.org/10.15837/ijccc.2009.4.2457 

35. Li Y., Chen Y.Q., Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and 

generalized Mittag–Leffler stability. Comput. Math. Appl., 2010, vol. 59, pp. 1810-1821. 

https://doi.org/10.1016/j.camwa.2009.08.019 

36. Aguila-Camacho N., Duarte-Mermoud M.A., Gallegos J.A. Lyapunov functions for fractional order systems. Comm. 

Nonlinear Sci. Numer. Simulat., 2014, vol. 19, pp. 2951-2957. https://doi.org/10.1016/j.cnsns.2014.01.022 

37. Georgievskii D.V., Kvachev K.V. The Lyapunov–Movchan method in problems of the stability of flows and 

deformation processes. J. Appl. Math. Mech., 2014, vol. 78, pp. 621-633. 

https://doi.org/10.1016/j.jappmathmech.2015.04.010 

38. Habraken A.M. Modelling the plastic anisotropy of metals. Arch. Computat. Methods Eng., 2004, vol. 11, pp. 3-96. 

https://doi.org/10.1007/BF02736210 

39. Van Houtte P. Crystal plasticity based modelling of deformation textures. Microstructure and Texture in Steels, 

ed. A. Haldar, S. Suwas, D. Bhattacharjee. Springer, 2009. Р. 209-224. https://doi.org/10.1007/978-1-84882-454-

6_12 

40. Zhang K., Holmedal B., Hopperstad O.S., Dumoulin S., Gawad J., Van Bael A., Van Houtte P. Multi-level 

modelling of mechanical anisotropy of commercial pure aluminium plate: Crystal plasticity models, advanced yield 

functions and parameter identification. Int. J. Plast., 2015, vol. 66, pp. 3-30. 

https://doi.org/10.1016/j.ijplas.2014.02.003 

41. Lebensohn R.A., Ponte Castañeda P., Brenner R., Castelnau O. Full-field vs. homogenization methods to predict 

microstructure–property relations for polycrystalline materials. Computational Methods for Microstructure-Property 

Relationships, ed. S. Ghosh, D. Dimiduk. Springer, 2011. Р. 393-441. https://doi.org/10.1007/978-1-4419-0643-

4_11 

42. Trusov P.V., Shveykin A.I., Nechaeva E.S., Volegov P.S. Multilevel models of inelastic deformation of materials 

and their application for description of internal structure evolution. Phys. Mesomech., 2012, vol. 15, pp. 155-175. 

https://doi.org/10.1134/S1029959912020038 

43. Pozdeyev A.A., Trusov P.V., Nyashin Yu.I. Bol’shiye uprugoplasticheskiye deformatsii: teoriya, algoritmy, prilozheniya 

[Large elastoplastic deformations: theory, algorithms, applications]. Moscow, Nauka, 1986. 232 p. 

44. Levitas V.I. Bol’shiye uprugoplasticheskiye deformatsii materialov pri vysokom davlenii [Large elastoplastic 

deformations of materials at high pressure]. Kiev, Naukova dumka, 1987. 232 p. 

45. Kondaurov V.I., Nikitin L.V. Teoreticheskiye osnovy reologii geomaterialov [Theoretical foundations of 

geomaterial rheology]. Moscow, Nauka, 1990. 207 p. 

46. Korobeynikov S.N. Nelineynoye deformirovaniye tverdykh tel [Nonlinear deformation of solids]. Novosibirsk, Izd-

vo SO RAN, 2000. 262 p. 

47. Rogovoy A.A. Formalizovannyy podkhod k postroyeniyu modeley mekhaniki deformiruyemogo tverdogo tela. Ch. 1. 

Osnovnyye sootnosheniya mekhaniki sploshnykh sred [A formalized approach to the construction of models of solid 

mechanics. Part 1. Basic relations of continuum mechanics]. Moscow, Izd-vo IKI, 2021. 288 p. 

48. Markin A.A., Sokolova M.Yu. Termomekhanika uprugoplasticheskogo deformirovaniya [Thermomechanics of 

elastoplastic deformation]. Moscow, Fizmatlit, 2013. 319 p. 

https://doi.org/10.3970/cmc.2010.020.119
https://doi.org/10.1002/zamm.201800340
https://doi.org/10.1016/j.ijplas.2019.05.008
https://doi.org/10.7242/1999-6691/2018.11.2.17
https://doi.org/10.7242/1999-6691/2021.14.1.6
https://doi.org/10.1080/00207179208934253
https://doi.org/10.15837/ijccc.2009.4.2457
https://doi.org/10.1016/j.camwa.2009.08.019
https://doi.org/10.1016/j.cnsns.2014.01.022
https://doi.org/10.1016/j.jappmathmech.2015.04.010
https://doi.org/10.1007/BF02736210
https://doi.org/10.1007/978-1-84882-454-6_12
https://doi.org/10.1007/978-1-84882-454-6_12
https://doi.org/10.1016/j.ijplas.2014.02.003
https://doi.org/10.1007/978-1-4419-0643-4_11
https://doi.org/10.1007/978-1-4419-0643-4_11
https://doi.org/10.1134/S1029959912020038


A.I. Shveykin et al. Computational Continuum Mechanics. 2021. Vol. 14. No. 2. pp. 127-143 DOI: 10.7242/1999-6691/2021.14.2.11 

143 

49. Brovko G.L. Opredelyayushchiye sootnosheniya mekhaniki sploshnoy sredy: razvitiye matematicheskogo apparata i 

osnov obshchey teorii [Constitutive relations of continuum mechanics: Development of the mathematical apparatus 

and foundations of the general theory]. Moscow, Nauka, 2017. 432 p. 

50. Trusov P.V., Shveykin A.I., Yanz A.Yu. Motion decomposition, frame-indifferent derivatives, and constitutive relations 

at large displacement gradients from the viewpoint of multilevel modeling. Phys. Mesomech., 2017, vol. 20, pp. 357-

376. https://doi.org/10.1134/S1029959917040014 

51. Trusov P.V., Shveykin A.I. On motion decomposition and constitutive relations in geometrically nonlinear 

elastoviscoplasticity of crystallites. Phys. Mesomech., 2017, vol. 20, pp. 377-391. 

https://doi.org/10.1134/S1029959917040026 

52. Trusov P.V., Shveykin A.I., Kondratev N.S. Multilevel metal models: formulation for large displacements gradients. 

Nanoscience and Technology: An International Journal, 2017, vol. 8, pp. 133-166. 

https://doi.org/10.1615/NanoSciTechnolIntJ.v8.i2.40 

53. Anand L. Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large 

strains. Comput. Meth. Appl. Mech. Eng., 2004, vol. 93, pp. 5359-5383. https://doi.org/10.1016/j.cma.2003.12.068 

54. Trusov P.V., Sharifullina E.R., Shveykin A.I. Multilevel model for the description of plastic and superplastic 

deformation of polycristalline materials. Phys. Mesomech., 2019, vol. 22, pp. 402-419. 

https://doi.org/10.1134/S1029959919050072 

55. Shveykin A., Trusov P., Sharifullina E. Statistical crystal plasticity model advanced for grain boundary sliding 

description. Crystals, 2020, vol. 10(9), 822. https://doi.org/10.3390/cryst10090822 

56. Estrin Y., Tóth L.S., Molinari A., Bréchet Y. A dislocation-based model for all hardening stages in large strain 

deformation. Acta Mater., 1998, vol. 46, pp. 5509-5522. https://doi.org/10.1016/S1359-6454(98)00196-7 

57. Staroselsky A., Anand L. Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning. 

J. Mech. Phys. Solid., 1998, vol. 46, pp. 671-696. https://doi.org/10.1016/S0022-5096(97)00071-9 

58. Kalidindi S.R. Modeling anisotropic strain hardening and deformation textures in low stacking fault energy FCC 

metals. Int. J. Plast., 2001, vol. 17, pp. 837-860. https://doi.org/10.1016/S0749-6419(00)00071-1 

59. Beyerlein I.J., Tome C.N. A dislocation-based constitutive law for pure Zr including temperature effects. Int. J. 

Plast., 2008, vol. 24, pp. 867-895. https://doi.org/10.1016/j.ijplas.2007.07.017 

60. Bronkhorst C.A., Kalidindi S.R., Anand L. Polycrystalline plasticity and the evolution of crystallographic texture in 

FCC metals. Phil. Trans. Math. Phys. Eng. Sci., 1992, vol. 341, pp. 443-477. https://doi.org/10.1098/rsta.1992.0111 

61. Harder J. FEM-simulation of the hardening behavior of FCC single crystals. Acta Mechanica, 2001, vol. 150, pp. 

197-217. https://doi.org/10.1007/BF01181812 

62. Shveikin A.I., Sharifullina E.R. Analysis of constitutive relations for intragranular dislocation sliding description 

within two-level elasto-viscoplastic model of FCC-polycrystals. Vestnik Tambovskogo universiteta. Seriya 

Estestvennyye i tekhnicheskiye nauki – Tambov University Reports. Series: Natural and Technical Sciences, 2013, 

vol. 18, no. 4-2, pp. 1665-1666. 

63. Trenogin V.A. Funktsional’nyy analiz [Functional analysis]. Moscow, Nauka, 1980. 495 p. 

64. Rocks U.F., Canova G.R., Jonas J.J. Yield vectors in f.c.c. crystals. Acta metall., 1983, vol. 31, pp. 1243-1252. 

https://doi.org/10.1016/0001-6160(83)90186-4 

65. Kuhlman-Wilsdorf D., Kulkarni S.S., Moore J.T., Starke E.A. (Jr.) Deformation bands, the LEDS theory, and their 

importance in texture development: Part I. Previous evidence and new observations. Metall. Mater. Trans. A, 1999, 

vol. 30, pp. 2491-2501. https://doi.org/10.1007/s11661-999-0258-7 

 

The authors declare no conflict of interests. 

 

The original paper was received on 28.03.2021 and published in Russian on 14.04.2021. 

 

https://doi.org/10.1134/S1029959917040014
https://doi.org/10.1134/S1029959917040026
https://doi.org/10.1615/NanoSciTechnolIntJ.v8.i2.40
https://doi.org/10.1016/j.cma.2003.12.068
https://doi.org/10.1134/S1029959919050072
https://doi.org/10.3390/cryst10090822
https://doi.org/10.1016/S1359-6454(98)00196-7
https://doi.org/10.1016/S0022-5096(97)00071-9
https://doi.org/10.1016/S0749-6419(00)00071-1
https://doi.org/10.1016/j.ijplas.2007.07.017
https://doi.org/10.1098/rsta.1992.0111
https://doi.org/10.1007/BF01181812
https://doi.org/10.1016/0001-6160(83)90186-4
https://doi.org/10.1007/s11661-999-0258-7

