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This paper addresses the mathematical modeling of complex elastoplastic deformation of steel 45 along the plane 

trajectory in the Ilyushin’s deviatoric space, which consists of sections of both constant and variable curvature 

(Archimedes spiral). The constitutive equations of the proposed mathematical model are based on the Ilyushin’s 

vector representation of strain and stress. An approximate model of the theory of elastoplastic processes is used in 

mathematical modeling for plane trajectories with approximations of process functionals, which depend on the initial 

value of the curvature, rather than on the current curvature of the deformation trajectory. The constitutive equations 

of the mathematical model are reduced to the Cauchy problem, a numerical solution to which is obtained using the 

fourth order Runge–Kutta method. The validity of the mathematical model for this class of curvilinear strain 

trajectories was verified by comparing the calculation results with the experimental data obtained on the automated 

test machine SN-EVM in the mechanical testing laboratory of the Tver State Technical University. The experiment 

was carried out on thin-walled cylindrical specimens of steel 45 under complex loading (combined tension-

compression and torsion). The calculation results and experimental data characterizing the scalar and vector 

properties of the material are presented graphically. It has been established that the proposed approximate 

mathematical model is able to capture (both qualitatively and quantitatively) the main effects of complex plastic 

deformation for the considered class of strain trajectories in the areas of small and medium curvature. More accurate 

calculation results in the approximations of the plasticity functionals can be obtained by taking into account all 

complex loading parameters, including the current curvature of the strain trajectory, especially for strain trajectories 

with large curvature. 

Key words: plasticity, complex loading, Ilyushin's theory of elastoplastic processes, mathematical model, strain 
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1. Introduction 

 

Experimental research and studying the revealed patterns of elastic-plastic deformation of 

structural materials is of great importance for the development of the theory of plasticity. On the 

basis of experimental data, new mathematical theories are formulated, and their physical validity 

and limits of applicability are evaluated. The results of experimental work under complex loading 

of materials and variants of mathematical theories of plasticity are partially presented in 

publications [1–18]. 

Considerable amount of experimental data has been obtained upon deformation of materials 

along plane rectilinear trajectories and curved trajectories of constant curvature [3, 6, 7, 12, 15–18]. 

For a more complete verification of the constitutive equations of the theory of plasticity, it is 

necessary to set up experiments with the widest possible range of changes in the curvature of the 

trajectory within one test. There have been significantly fewer such experiments. Here, of particular 

interest are curved deformation trajectories of the Archimedes spiral type [3, 6, 14], in which 

various curvatures, from small to large, are observed in one experiment. 

In this article, we consider a mathematical model of the theory of elastic-plastic processes for 

deformation trajectories with sections of constant and variable curvature. The estimation of its 

reliability is carried out by comparing the results of calculations with experimental data [14] 

obtained on the computational test machine SN-EVM for this class of deformation trajectories with 

the sections described analytically by the Archimedes spiral. Model and experimental data are 

presented in the vector representation of strains and stresses according to A. A. Ilyushin [1–4]. 

Previously, the variants of the mathematical model used were used for numerical description of 

processes within the framework of the theory of elastic-plastic deformation processes of two-link 

and multi-link polyline rectilinear trajectories [15, 16], as well as trajectories containing curved 

sections of constant curvature [17, 18]. 
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2. Constitutive equations 

 

We introduce the orthonormal basis 1 2 3, ,e e e , where  
 

 

0

1
ij i j

i j

i j



   



e e  — the Kronecker 

symbol ( , 1, 2, 3)i j  . In this basis, the Cauchy stress tensor T  and the small strain tensor T , 

which characterize the stress-strain state of a body at a point with coordinates 
nx  ( 1, 2, 3)n  , it is 

customary to decompose into hydrostatic tensors and deviator tensors. In the component form, the 

latter are represented as follows [1–3]: 

 
*

0ij ij ijS     ,       *

0ij ij ijЭЭ          ( , 1, 2, 3)i j  . 

 

Here, respectively:  0

1

3
ij ij   ,  0

1

3
ij ij   ,  ij ijS S  ,  ij ijЭ Э Э   — modules of 

hydrostatic tensors (mean stress and strain) and stress and strain deviator tensors; 
0ij ij ijS     ,  

0ij ij ijЭ     ,  * ij

ij

S
S


 ,  * ij

ij

Э
Э

Э
  — components of deviator tensors and direction tensors of 

stresses and strains ( , 1, 2, 3)i j  . 

 

In the case of simple, i.e. proportional loading, the components of the stress and strain direction 

tensors coincide: * *

ij ijS Э . Then, taking into account the elastic volume deformation, the 

constitutive equations (according to the theory of small elastic-plastic deformations) will take the 

form [1–3]: 

 

0 03K  ,      2ij ij p ijS Э G Э
Э


        ( , 1, 2, 3)i j  , 

 

where K  — Bulk modulus, 
pG  — plastic shear modulus, Ф( )Э   — a universal Roche–

Eichinger function under simple loading, which determines the scalar properties of materials for an 

arbitrary stress-strain state. When implementing complex loading, the components of the stress and 

strain direction tensors do not coincide: * *

ij ijS Э . This means that taking into account only the scalar 

properties of materials in the determining ratios is insufficient. However, the tensor presentation of 

the theory of plasticity cannot geometrically visualize the vector properties of materials in three-

dimensional physical space [3]. 

A. Ilyushin proposed [1, 2] a vector (geometric) representation of the process of deformation or 

loading, where in a linear combined Euclidean space 6E  with an orthonormal fixed basis  ki  

( 0,1,2,...,5)k   tensors with components 
ij  and 

ij  the stress and strain vectors are placed in one-

to-one linear correspondence: 

 

 0 0 ,S S i σ       0 0Э ε i Э ,   

 

where  ,k kSσ i   k kЭЭ i   ( 1, 2, ..., 5)k   — vectors of stresses and strains of the shape change in 

the 5 dimensional deviator subspace 5E . The validity of such a representation is discussed in detail 

in [5]. The coordinates of vectors are related to the components of tensors and deviators by one-to-

one relations [1–4]: 
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Modules of vectors in a 5-dimensional subspace 
5E  are equal to the modules of the stress and strain 

deviator tensors, respectively: 

 

k k ij ijS S S S  σ ,      k k ij ijЭ Э Э Э Э  Э    ( 1,2,...,5)k  , ( , 1, 2, 3)i j  . 

 

In the theory of elastic-plastic processes of A. A. Ilyushin [1–4], the history of changes in 

stresses and strains over time is represented as an image of deformation or loading — a trajectory, 

to each point of which variable characteristics of the process (vectors of stresses, strains and their 

increments) and scalar parameters (temperature, average stress and strain, and others) are attributed 

[1–4]. The general constitutive equations of the theory of plasticity [3, 4] reflect the relationship 

between the vectors of stresses σ  and strains of the shape Э  change  taking into account the scalar 

and vector properties of materials. Scalar properties define the relationship between the invariants 

of stress and strain deviator tensors, and vector properties describe the misalignment of stress and 

strain deviator tensors and their increments. For the case of plane strain trajectories with analytical 

curved sections, the constitutive equations have the form [3, 4]: 

 

 1 1 1cos ,
d d d

M M
ds ds ds






 
   

 

σ Э σ
       1 1

1 1sin .
d M

ds


 


    (1) 

 

Here: s  — arc length of the strain trajectory; 0

1 1 1 1( , , )s     — the angle of delay, which is a 

functional of the vector properties of the material, which determines the direction of the vector at 

each point of the strain trajectory and the influence of the vector properties of the material on the 

deformation process; 0

1  — the angle of the trajectory break at the starting point of its analytical 

section; 1  — trajectory curvature; 0

1 1( , , )s     — functional of scalar properties of a 

material; 1M , 
d

ds


 — functionals of the deformation process, depending on the parameters of 

complex loading 0

1 1, ,s   .  

 

3. Mathematical model of elastic-plastic processes 

 

The basic equations of the mathematical model in the framework of the theory of elastic-plastic 

deformation processes include the constitutive equations (1) and approximations of the functional 

processes [3]. For plane curved trajectories with sections of variable curvature such as the 

Archimedes spiral, the following approximations of the functionals are used in the model: 

 

 
   

 

max10

1 0 0 1 0 *

0

1

( )
( ) Ф , , Ф 2 ,

2 2 2 .

p

q

р р

s s
s s s Af B e G s

M G G G f

     
     

  
 (2) 

 

In expressions (2), the notation is accepted:  Ф s  — universal Odquist-Ilyushin function for 

processes close to simple loading without taking into account their history; т

Ks s s    — the 

increment of the arc of the strain trajectory, where т

Ks  — the length of the arc at the point of the 
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trajectory break or change in its curvature (at the junction of the analytical sections); 
maxs  — arc 

length for the end point of the strain trajectory on the Archimedes spiral section; 
0  — the value of 

the curvature of the strain trajectory at the starting point of the Archimedes spiral section; G  — 

shear modulus; 0

рG  — calculation of the plastic shear modulus 
pG  at the break point of the 

trajectory;   — the complex loading function [3], which describes the scalar "dive" of stresses at 

the trajectory break and the generalized Bauschinger effect at the resulting complex unloading and 

subsequent secondary plastic deformation, 

 

  1s ss e b e           
 

; (3) 

 

1
1

1 cos
( )

2
f f





  ; f  — the complex loading function [3], which takes into account the 

orientation of the stress vector during deformation process and its value at the point of the strain 

trajectory break, 
0

0 1
0 1

1 cos
( )

2
f f





  ; 1 1, , , , , ,A B b p q   — numerical parameters of 

approximations. 

To approximate the universal Odquist–Ilyushin hardening function under simple (proportional) 

loading, the expressions [3] 

 

 
 

 
т

т

т т ( ) т

* *

2
1 , 0 ,

Ф( )

2 ( ) 1 , .

s

s s

G
e s s

s

G s s e s s







 



 


  

  
     


 (4) 

 

Here: т

т2 / 3  ; т  — tensile yield strength; 
тs  — the boundary on the deformation diagram 

that separates its elastic part and the yield area (
т0 s s  ) from the material hardening site  

(
тs s ); *,  *,G  ,    — material constants determined experimentally under simple 

(proportional) loading. 

Under the specified initial conditions for the components ( 1, 3)kЭ k   strain vectors Э  and the 

value of the angle 0

1 , the basic equations of the model are reduced to the Cauchy problem for each 

analytical section of the strain trajectory. The trajectories of the strain vector are given, and the 

trajectories of the stress vector are obtained by integrating the defining relations (1). For the 

numerical solution and finding the components ( 1, 3)kS k   stress vectors σ  and values of the 

approach angle 1  the Runge–Kutta method of the fourth order of accuracy from the linear algebra 

package is used MathWorks MATLAB.  

 

4. Comparison of calculation results with experimental data 

 

The experimental study was carried out on an automated test machine SN-EVM, which 

implements a three-parameter effect on the specimen (axial tension–compression, torsion and 

internal pressure). The author of the article, together with V. I. Gultyaev under the guidance of V. 

G. Zubchaninov, conducted a series of macroexperiments [14] in the laboratory of mechanical tests 

of TvSTU. Test specimens in the form of thin-walled cylindrical shells made of 45 steel had a gage 

length of 110l   mm, the thickness 1h   mm and the diameter of the median surface 31d   mm. 

The initial isotropy of the specimen material was confirmed with a sufficient degree of accuracy in 

experiments under simple loading (under tension, compression and torsion). After processing the 

experimental diagrams, the following values of the material constants (steel 45) were taken in the 



A.A. Alekseev Computational Continuum Mechanics. 2021. Vol. 14. No. 1. pp. 102-109 DOI: 10.7242/1999-6691/2021.14.1.9 

106 

approximation (4): 
т 285   МПа, т 39 10s   , 52 1,577 10G    МПа, 70  , 900  , 

* 78,8   МПа, 
*2 1619G   МПа. 

Figure 1, in the deviator space of deformations 1 3Э Э  (kinematic loading) shows a plane 

trajectory of deformation, which corresponds to the process of deformation under a complex 

combined loading on the specimen of tension-compression and torsion. 

In the first,  rectilinear section, a proportional extension along the component 
1Э  to the value is 

realized *

1 1% 0,01Э   . In the second section, when the trajectory is broken by an angle 0

1 90    

there is a trajectory of constant curvature in the form of a complete central circle of radius *

1R Э . 

In the third section, the strain trajectory smoothly, without a break, passes into the Archimedes 

spiral, which is crowding at the origin of coordinates, and corresponds to the process of complex 

disproportionate unloading [14]. The spiral pitch is 0.0025. The curvature of the trajectory on the 

section of the circle is 
1 100 const   ,  on the 1st turn of the spiral, it changes within 

1 100 133,3   ; on the 2nd — 1 133,3 200   ;  on the 3rd — 1 200 400    and on the 4th — 

1 400 5026   . In Figure 1 and the following figures, the numbers 1, 2, 3, 4 indicate the 

experimental points of the beginning of the corresponding turns of the spiral.  

 

  
Fig. 1. Strain trajectory on the plane 1 3Э Э  Fig. 2. Stress response on the plane 1 3S S  

 

Figure 2 shows the response to the strain trajectory in the plane 1 3S S  the deviator space of 

stresses, Figures 3, 4 show the diagrams s   and 1 s  , describing the scalar and vector 

properties of the material, respectively. Local strain tension-compression diagrams in components 

1 1S Э  and shear stresses and strains in components 3 3S Э  they contain Figures 5, 6. The 

experimental data are indicated by dots, and the calculated data obtained on the basis of the selected 

approximate model is a solid blue line. 
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Fig. 3.  Stress-Strain Diagram s   

 

 
Fig. 4. Diagram 1 s   (characteristics of vector material properties) 

 

  

Fig. 5. Local Stress-Strain Diagram 1 1S Э  Fig. 6. Local Stress-Strain Diagram 3 3S Э  

 

On the four turns of the Archimedes spiral, the modulus of the stress vector gradually decreases, 

and here there is a complex disproportionate unloading [3, 14], and starting from the middle of the 

fourth turn, there is an almost elastic unloading of the material (see Fig. 4), which is qualitatively 

and satisfactorily quantified by the approximation (2) proposed in the work. The calculated and 

experimental data on the angle of delay 1  show that with an increase in the curvature of the 

trajectory its value increases, and the section of almost elastic unloading of the material corresponds 

to the value 1 90   . To determine the parameters of approximations , , , ,A b p q  in formulas 

(2), (3), the method described in [16] was used. Parameters 1 1,B   were found by selection based on 

MPa MPa 
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the condition of compliance with experimental data. The calculation is taken: 370,2A   МPа, 

0,125b  , 386,8  , 
1 2,9B   МPа, 

1 150  , 1,8p  , 0,3q  , 
max 0,1978s  , 

0 100  .  

The proposed mathematical model of the theory of processes for curved strain trajectories is 

approximate since in the expression (2) the functional ( )s  it does not depend on the current 

curvature of the trajectory 
1 , and from the initial value of the curvature 0 100 const   . As can 

be seen from the figures, the model shows a good agreement between the calculated and 

experimental data only for small and medium curvatures of the strain trajectory (see Fig. 2). 

At the end of the last turn of the Archimedes spiral, the curvature reaches very large values: 

1 400 5026   , therefore, here we can only speak   about the qualitative correspondence of the 

calculated and experimental data. It is obvious that in order to obtain more accurate calculation 

results in approximations of plasticity functionals, it is necessary to take into account all the 

parameters of complex loading. For plane trajectories, this is the length of the trajectory arc s ,  the 

angles of its fracture 0

1 ( )s  and curvature 
1( )s . 

 

5. Conclusion 

 

The verification of the approximate mathematical model of elastic-plastic processes by 

comparing the results of numerical calculations with experimental data indicates the correctness of 

the choice of a model of complex elastic-plastic deformation of steel for this class of curved strain 

trajectories with analytical sections, such as the Archimedes spiral. There is a qualitative and 

quantitative agreement between the experimental data and the numerical calculations based on the 

mathematical model for the trajectories of small and medium curvature. 

To refine the results of numerical calculations based on the approximate model, it is necessary to 

take into account in its functionals all the main parameters of complex loading (parameters of the 

internal geometry of the strain trajectory). For plane strain trajectories, this is the length of the arc 

of the trajectory s , its curvature 1( )s , and the angles of fracture 0

1 ( )s . Failure to take into 

account the curvature 1  in the functionals approximations may lead to a discrepancy between the 

calculated results and experimental data for the trajectories of large curvature. 
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