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A coupled non-isothermal model of the penetration process of a material into a target surface under conditions of 

surface treatment with a particle beam is presented. The model takes into account the interaction of impurity 

diffusion, heat propagation, mechanical disturbances and the chemical reaction between the introduced impurity and 

the substrate material. The problem is formulated in terms of dimensionless variables. All model parameters and the 

range of numerical values are given. The problem is solved numerically using an implicit symmetric difference 

scheme of the second order approximation in time and coordinates. The solutions are obtained for different time 

intervals determined by the characteristic pulse action time and relaxation times for diffusion and thermal 

conductivity. It has been established that the interrelation of processes of different scales leads to the appearance of 

distortions on strain and stress waves, and the distributions of temperature and impurity concentration acquire a wave 

character. The formation of chemical compound leads to a decrease in the concentration of impurities and to an 

increase in temperature, stresses and deformation. It is shown that the chemical reaction at low heat generation 

proceeds only as long as the temperature increases due to the introduced energy. It has been found that, at slow 

formation of the product in the reaction, the chemical interaction practically does not affect the propagation of 

temperature, deformation, stresses and impurity concentration. 

Key words: coupled model, particle beam, wave propagation, nonlinear effects, elastic stresses, diffusion, heat 

conduction, relaxation of heat flux, relaxation of mass flux, chemical reaction 

 

1. Introduction 

 

Surface treatment of metals by a charged particles beam is a long-estableshed method of 

processing materials to improve their mechanical properties and wear resistance and, consequently, 

to increase the service life of of various mechanical products in engineering machine-building 

[1, 2]. In particular, solid solutions formed as a result of introduction of particles into the surface 

layers impede the dislocation movement, as well as the nucleation and propagation of microcracks. 

This significantly increases the mechanical and tribotechnical characteristics of the materials [3]. 

There are a lot of physical and chemical processes when flux particles interact with the treated 

surface. The particles of the flow collide with the surface, and some physical and chemical 

processes interact with each other and affect the final result. For example, in [4, 5] it was found that 

surface modified layers are formed containing fine-dispersed intermetallic phases and solid 

solutions of variable composition in depth form after high-intensity ion implantation. Also the 

relationship was found between the structural phase state of the modified materials and the 

implantation conditions.  

It was noted in [6] that the impact of the particle flux on the target leads to its heating, the 

appearance of shock waves and ablation of the material from the treated surface. It was determined 

that thermal and barodiffusion processes are responsible for the mass transfer of introduced 

particles in the surface layers, while at depth the main contribution is made by the shock wave. The 

duration of action, flux parameters and material composition primarily influence on the depth of the 

modified layer and on the nature of the structural-phase transformations in it [7]. Thus, it would 

seem that by controlling the external processing parameters one can achieve maximum results in 

improving the surface properties, but insufficient understanding of the physical processes occurring 

in the solid during treatment limits the possibilities of this method despite the available 

experimental and theoretical material. Therefore, research in this area is relevant. 

Mathematical modeling makes it possible to study in detail co-occuring processes relating with 

surface treatment by a particle flux. First, when building a model and performing a parametric 

study, one can select only the phenomena of interest and discard the rest, while the experiment does 

not provide such an opportunity. Secondly, it is possible to track the dynamics of processes from 
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the introduction moment to later times. Third, there is no need to purchase expensive materials and 

equipment for the experiment. 

Fourier's law is classical for describing heat transfer. However, for the cases of heat transfer in 

fast processes on micro-, nanoscale, the models taking into account nonlinear effects are used. A 

detailed review of the laws of heat conduction that do not fit into classical concepts, is given in [8]. 

Similar changes for nonequilibrium conditions are introduced into Fick's equations. In [9, 10] the 

process of harmonic disturbances propagation is studied in a thermoelastic medium, taking into 

account relaxation of heat flux, i.e. heat propagation obeys the hyperbolic heat conduction equation. 

Diffusion processes are not considered here. In [11] a model of impurity redistribution in a three-

component system is discussed. The mechanical stresses occurring in the diffusion zone are taken 

into account. This leads to changes in the width of the diffusion zone, as well as the quality of the 

concentration distribution. In [12] the effect of thermodiffusion on redistribution of components and 

mechanical stresses in the surface layer of the material during its treatment by a particles flux was 

studied. It was found that thermodiffusion is most significant for the material with higher viscosity. 

In [13], a model of the intermetallic phase formation in the surface layer of aluminum during its 

modification by nickel ions was presented. Data on the preferential formation of phases for different 

processing conditions were obtained. However, this model does not regard the interaction of 

diffusion and mechanical disturbances. In [14, 15], analytical methods are used to study the 

problems of thermoelastic diffusion. 

The aim of this work is to numerically investigate the combined propagation of elastic 

mechanical waves (generating by particle impact on the surface) and diffusion of introduced 

particles taking into consideration their chemical interaction with the treated material and the 

nonisothermal nature of the process. The relaxation times of the heat and mass fluxes are also 

considered in the mathematical model. Thus, the equations of heat conduction and diffusion do not 

correspond to the classical equations. In addition, in contrast to the earlier work of the authors [16], 

the thermal conductivity and balance equations of the introduced component take into account the 

source/loss of heat due to the chemical reaction and the cost of the introduced element to the 

formation of a chemical compound. 

 

2. Mathematical formulation of the problem 

 

The process of charged particles interaction with the target surface under the condition of 

chemical interaction of particles with the processed material can be described within the framework 

of the thermoelastic diffusion theory [18–20] taking into account the nonlinear effects associated 

with the dependence of the diffusion coefficient and the chemical reaction rate on the material 

composition and temperature. Suppose that the chemical reaction is possible in the surface layer and 

it satisfies the overall scheme: 

B B С C P PX X X    , 

 

where BX  is the base element reacting with the introduced element CX , PX  is the reaction product,

B , C and P  are stoichiometric coefficients. In the general case, the rate of such reaction can be 

written in the form: 

     0

С B

C Bk X X T
 

  , 

 

where 0k  is the pre-exponential factor or rate constant of a chemical reaction; the concentration of 

the corresponding substance is indicated with square brackets. Below, to simplify the record, the 

square brackets are omitted and the following notations are used: С  is the mass concentration of 

the introduced element; PС  is the mass concentration of the reaction product. 
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Because the kinetics of reactions in the solid phase is not obvious, for simplicity we will assume 

that the reaction rate is proportional to the concentration of the introduced element, and depends on 

the temperature according to Arrhenius law: 

 

 0 exp RE
k С

RT
 

 
   

 
. 

 

Here:   is the density of target material;    1 РС С С С     is the kinetic function; 
RЕ  is the 

activation energy of the chemical reaction; R  is the universal gas constant. Assume that all 

stoichiometric coefficients are equal to one. 

Then the equations system of the non-isothermal mechanodiffusion model describing the initial 

stage of the particle beam penetration process into target surface [16], supplemented with the 

chemical kinetics equation, will take the form: 

 

 0
d

dt


  v , (1) 

 kk
T q ch

ddT
С T W

dt dt



    J , (2) 

 С

dС

dt
    J , (3) 

 P
Р

dС

dt
   , (4) 

 
d

dt
  

v
σ . (5) 

 

In equations (1)-(5) the following notations are taken: t  is the time; T  is the temperature; C  is the 

heat capacity at constant stress; T  is the linear coefficient of thermal expansion; σkk  is the first 

invariant of the stress tensor; qJ  is the heat flux; chW  is the source or loss of heat by chemical 

reaction, chW Q  , where Q  is the thermal effect of a chemical reaction; J  is the mass flux;   is 

the conversion rate; v  is the mass average velocity; σ  is the stress tensor with components ij ; 

 ... div ... .   Mass forces in the equations are neglected. 

The increments of the strain tensor components connect with the increments of the elastic stress 

tensor components, the concentration and temperature increments by the generalized relations: 

 

  2ij ij ij kkd d d Kd         . (6) 

 

Here: ,   are Lame coefficient (coefficient   in linear theory coincides with the shear modulus);  

K  is the isothermal bulk module, 2 3K    ;   is the temperature and concentration function, 

 

        0 0 0 0 03 T Р Р РT T C C C C               ;  

 

 , Р , 0  are concentration expansion coefficients of the introduced element, the reaction product, 

and the base element; 0 0 0, , PT C C  are initial temperature and initial component concentrations. 

In the generalized relation for the mass flux, we take into account the transfer under the action of 

stresses; we assume that the relaxation times of the heat and mass fluxes are different; we will not 

consider the Soret and Dufaure phenomena. Then 



E.S. Parfenova and A.G. Knyazeva Computational Continuum Mechanics. 2021. Vol. 14. No. 1. pp. 77-90 DOI: 10.7242/1999-6691/2021.14.1.7 

80 

 

 kk D

d
D C B C t

dt
      

J
J , (7) 

 
q

q T q

d
T t

dt
   

J
J . (8) 

With that:  0D D f C  is the diffusion coefficient, where   0

0 exp DD D E RT   is the self-

diffusion coefficient;  f C  is the function that takes into account the dependence of the diffusion 

coefficient on the composition, where 
0D  is the pre-exponent in the law for the diffusion 

coefficient, 
DЕ  is the activation energy for the diffusion process;  0B D m RT    is the mass 

transfer coefficient under the action of stresses, where m  is the molar mass,  0      is the 

difference between the concentration expansion coefficients of the introduced element and the base 

element; Dt  is the mass flux relaxation time; T  is the coefficient of thermal conductivity; qt  is the 

heat flux relaxation time. In this study   1f C  , i.e. the diffusion coefficient D  is equal to the 

self-diffusion coefficient 0D . 

Let us introduce some simplifications by analogy with the work [16]. Deformations, velocities 

and accelerations will be considered small. Then the need for the equation (1) disappears, and the 

left part of the motion equation (5) becomes the following [24]: 

 

 
2

0 0 2

d

dt t t
  

  
    

  

v v u
v v .  

 

Moreover, as in thermoelastic diffusion models [14, 25-27], instead of the relations in the 

increments (6) we can write: 

  2ij ij ij kk K       .  

 

The particle beam is considered to be uniformly distributed along the treated surface, so we can 

restrict ourselves to a one-dimensional problem. In this case, the condition of uniaxial loading is 

realized: 

 xx  ,       0yy zz   ,       
3

E


 
 

  
 

, (9) 

 

where xx   and E  is the elastic modulus, 
3 2

E
 


 





. Because the displacements and 

deformations are small, the Cauchy relations take place. 

As a result, we obtain a system of one-dimensional coupled equations in which the vector 

notations for the fluxes are replaced by scalar one: 

 

 0

С J

t x


 
  

 
; (10) 

 
0

q

T

JT
C T Q

t t x



 

 
    

  
; (11) 

 
2

0 2

u

t x




 


 
; (12) 

 0
PС

t



 


. (13) 
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The defining relations (6)-(8) and the Cauchy relation take the form: 

 

 0 D

C J
J D B C t

x x t





  
   

  
; (14) 

 
q

q T q

JT
J t

x t



  

 
; (15) 

         0 0 0 0 0T P P PE T T C C C C               ; (16) 

 
u

x






. (17) 

 

The initial and boundary conditions for system (10)–(13): 

 

      0 0 00 : ;   ;   ;qx J m t J q t t          

 :x       0 ,  Т Т        0 ,   0;C С    (18) 

 0:t       0 ,   0   C C   ,        0P pC C ;       0     ,   0,  0;   
C

T T
t t

 
  

 
  

 

0 0 0, ,m q   are external influence parameters related to fluxes of particles, heat and stresses, 

respectively. 

From (10), (11) and (14), (15), the second-order differential equations on both time and 

coordinate for the introduced impurity concentration and temperature follow: 

 

 
2

0 02D D

С С C
t D B C t

t t x x x x t



 
          

        
          

; (19) 

 
2

0 02q T q q T T

T T T
t C C Q t Q t T T

t t x x t t t t
 

 
    

          
        

          
. (20) 

 

From (12) and (16) we find: 

 

    
22 2 2 2

0
0 0 0 0 02 2 2 2 2

P
T P

CT C

E t t t t x

  
       

   
     

    
, (21) 

 

or 

    
2 2

0 0 02 2

P
T P

Cu u T C
E E E E

t x x x x
     

   
     

    
.  

 

The last relation can be written in deformations: 

 

    
22 2 2 2

0 0 02 2 2 2 2

P
T P

CT C
E E E E

t x x x x

 
     

   
     

    
.  

The kinetic equation (13) remains unchanged. 

Note that, as in the classical theory of thermoelasticity [28, 29], the motion equation in stresses 

contains the temperature and concentration derivatives with time, and the motion equation in 

deformations contains temperature and concentration derivatives with the space coordinate. 
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3. Method for solving 

 

By analogy with [16, 30], we introduce dimensionless variables for the presented equations 

system (19)-(21) with initial and boundary conditions (18): 

 
*

t

t
  ,      

*

x

x
  ,      

*

S



 ,      0

* 0

T T

T T


 


,      

*

.e



   

 

The scales are defined by expressions: * * 0t x E  is the time it takes the elastic wave to 

move the distance  * * 0Tx t C   is the heating area formed during this time; 

 * * 0TE T T    is the maximum thermal stresses arising at heating to temperature 
*Т ; 

0 *
* 0

T

q x
T T


   is the temperature at depth 

*х  when the material is heated by a flux of value 
0q , 

 * * 0T T T    is the maximum thermal strain achieved at heating to the temperature of 
*Т . 

As a result, we have the equations system in dimensionless variables: 

 

 
22 2 2 2

2 2 2 2 2
,P

P

CS C S
 

    

    
   

    
 (22) 

 

   
 

 

   
   

2

D D2
Le Le

,

D

ch

ch ch D

С C С M S
F f C С F

C F
C F




      


  



        
       

         

  
   

 

 (23) 

 

   

   
   

2 2

2 2
 

 ,

q q

ch

ch ch q

S S

C F
C F

     
     


  



        
      

      

  
   

 

 (24) 

     ,P
сh ch

С
C F 




 


 (25) 

 

with initial and boundary conditions: 

 

 0 :       0 ;m  J        0 ;q q  J        0 ;S     (26) 

   :    0C C ;      0  ;      0;S   (27) 

 0  :    0С С ;      0;P РС С       0S  ;      0  ;      0
C







;      0







;      0,

S







(28) 

 

where  
 

 

11
expD

D

F
 

 
     

,  
 

1 1
expch

ch

F
 

 
     

 are dimensionless diffusion 

coefficients.  

The fluxes of heat and mass in dimensionless form: 

 

    
 

 
,

D

D D

MCFC S
f C F




   

  
    

   

J
J  (29) 
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 .
q

q q
 


  

 

J
J  (30) 

 

All model parameters appearing in the system of equations (22)-(25) with conditions (26)-(28) 

and their physical meaning are presented in Table 1. 

Table 1. Model parameters. 

Parameter Physical meaning 

 * 0

,
T T T










  

 * 0

P
P

T T T










 Relationship of concentration strains to thermal strains for 

the introduced material and the chemical reaction product 

0
* 0

*

expch

E
t k

RT


 
  

 
 

The ratio of the characteristic propagation time of 

mechanical disturbances to the characteristic time of the 

chemical reaction

 

 * 0

chQ

С T T
 


 

The ratio of heat release in the reaction to the heat that is 

stored due to external heating to a temperature
*T

 

*

q

q

t

t
  ,  

*

D
D

t

t
   Relative relaxation times of heat flux and mass flux 

0
0

*q

m
m

J
 ,  

0
0
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For the obtained model parameters, based on the literature data [31], the estimation of acceptable 

ranges of numerical values for a wide class of metallic materials was carried out. The intervals of 

variation of the main parameters are given in Table 2. The table shows that many parameters 

change in a sufficiently large interval. 

Table 2. Acceptable ranges of model parameters numerical values. 

Parameter Variation interval Parameter Variation interval Parameter Variation interval 

, Р   
26 10 ...100     

D

 

 0,025...2,5

 



 

55 10 ...0,5  
 

ch

 

26 130,2 10 ...0, 2 10   
 

0m  525 10 ...200    Le

 

22 26 10 ...10   
 



 

60,7 10 ...200  
 

0  50,02 10 ...10    ch

 

 0,03...0,3

 
q

 

20,25 10 ...0,25  
 

0q  113 10 ...7    
D

 

 0,02...0,06

  

The system (22)-(25) with conditions (26)-(28) was solved numerically using an implicit 

symmetric second-order difference scheme to represent the derivatives both with time and with 
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coordinate. The coefficients in the derivatives were calculated owing to the values from the 

previous layer over time. The convergence was investigated by calculations with decreasing of the 

grid step (increasing the number of partitions of the computational domain) and decreasing of the 

time step. For example, the first summand in the right part of the diffusion equation (23) after 

approximation had the form: 
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1 1
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The second summand (without coefficients) was completely dissected through the values from 

the previous layer over time: 
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When constructing a discrete analogue of the thermal conductivity equation,variants are possible 

giving the numerically same results: 1. The time derivatives of stresses are taken from the previous 

time layer. 2. The second derivative of stresses is replaced with expression from the motion 

equation, and the emerging second derivative of concentrations is replaced with expression from the 

diffusion equation. Then all derivatives not of the temperature are represented in the same way as 

on the bottom layer. Variant 1 turned out to be more stable. 

So, the time derivatives of temperature were approximated as follows: 
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2 2

2
;     .

i i ii i
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The source summands were taken from the previous time layer: 
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2

1 1 1 1
exp

ch ch

C



   

   
     

.  

 

The two similar variants of the motion equation approximation giving similar results are 

possible. As a result, all equations were linearized and "decoupled" and could be solved numerically 

independently of each other and in any convenient way. In the present work, all equations were 

reduced to a form suitable for the sweep method.  
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The boundary conditions were also written in discrete form using difference schemes with the 

second order of approximation. For this purpose, we used Taylor series expansions of the functions 

in the nodes of the difference mesh nearest to the boundary, relative to the values at the boundary 

points up to the values of the second order of smallness. The second derivatives appearing in the 

expansion were found from the basic differential equations, which are also correct at the boundary 

points. 

The kinetics equation was represented as: 
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.  

 

Note that the kinetic equation is solved "last", therefore the diffusant concentration and the 

temperature in it are already found at this time layer. This approach has proven itself well in solving 

problems in macrokinetics. 

The solutions converged to a certain limit when the values of the mesh parameters were 

decreased. The mesh refinement and reduction of the time step ended when the results stopped 

varying up to 3-5%. The worst convergence was observed for the diffusion equation. The solution 

of the problem without taking into account the chemical reaction was in agreement with the 

solutions obtained in the previous author’s work [16]. 

In general, there is no universal way to solve nonlinear coupled problems numerically, and there 

is no exact theory of the convergence and stability of the corresponding difference methods. 

Limitations in the solution of coupled problems also apply to the numerical values of physical 

parameters. They are caused by the condition of non-negativity of the Onzager coefficient matrix. 

Negative concentrations and other non-physical effects can occur if it is not taken into account. This 

problem is known in chemical kinetics, but is rarely discussed in literature devoted to the numerical 

methods. 

 

4. Results and discussion 

 

It is necessary to consider in detail the dynamics of propagation of strain/stress waves, thermal 

and concentration waves at different time intervals in the study of the interdependence of these 

processes. In the presented formulation of the problem, they are defined by the following 

parameters: the characteristic time of the pulse action imp
 
and the relaxation times for diffusion D  

and thermal conductivity q . In this case, their values are correlated as follows: q D imp    .  

Table 3. Calculated values of model parameters. 

Paramete

r 
Value Parameter Value Parameter Value Parameter Value 

  1,5   200,0   0,05 M  10,5 

Р  –0,5 D  0,02 q  0,005 imp  0,03 

0m  5,0 0  0,001 0q  5,0   0,55 

ch  200,0 Le  0,0025 D  0,027 ch  0,3 

 

Since the areas of variation of many model parameters are significant, it depends on both the 

type of specific materials and processing conditions, so a parametric study is of interest.   The value 
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of some parameters was fixed. The numerical values of the model parameters for the calculations 

were taken without connection to real materials. This is partly due to the fact that many of the 

physical parameters included in the dimensionless complexes are known with a large inaccuracy or 

the data on it are not reliable and depend on the model on the basis of which they were estimated. 

The values used in this paper are given in Table 3. 

We assume that a single sinusoidal pulse acts on the surface of the target: 
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sin , ,
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Fig. 1. The results of solving a coupled problem: distribution of introduced material concentration (а, b), 

mass content of the reaction product (c, d), strain (e–g), stress (h–j) at different time moments  : 1 – 

0,004; 2 – 0,005; 3 – 0,006; 4 – 0,008; 5 – 0,009; 6 – 0,01; 7 – 0,015; 8 – 0,02; 9 – 0,025; fragments of 

graphs that are presented in a larger scale are marked with a dotted line. 
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Figure 1 shows the results of solving the problem for different time intervals. It can be seen that 

in the concentration wave (Fig. 1 a, b) there are no visible distortions associated with the influence 

of thermal and mechanical waves for the selected parameters set. Diffusion wave propagates much 

slower than mechanical disturbances. The velocity of the stress, strain and temperature waves are 

close, however, the leading front of the strain wave is only visible in the graphs after zooming (Fig. 

1 e). The following figures in the article show only part of the deformation wave at the left 

boundary, which shows the mutual influence of waves of different physical nature. Because the 

wave velocities are different, there is no change at the leading edge of the mechanical wave. By the 

time 
imp   ( Fig. 1a, b) the depth of implanted impurity penetration increases from 30,8 10   to 

31,2 10 .   The chemical reaction starts almost immediately at τ τq , but the concentration of the 

reaction product at the initial moments is insignificant: 41,8 10РС    (Fig. 1 c).  

From the time 
q  , we can see some distortion on the strain wave that corresponds to the 

position of the leading front of the impurity concentration wave (Fig. 1 e-g, gray circles). The place 

where the deformation wave crosses the axis О  is marked with black circles, that is, the sign of the 

deformation changes here. There is an extreme on the stress wave in this area (Fig. 1 h-j, black 

circles). Up to the time 0,02   (equal to D ), the concentration of the impurity on the left boundary 

increases, but then begins to decrease, which is explained by a rapid increase in the reaction product 

concentration (Fig. 1 b, d).  

At moments of time 1-9, when imp   (Fig. 1 h-j, Fig. 2 a), any features do not appear on the 

temperature and stress waves. But by the time imp   and for times slightly longer than the pulse 

action time (Fig. 2 b, curves 10-12), the formation of a maximum is observed on the thermal wave 

(gray squares, which correspond to distortions in the stress wave (Fig. 3 f)). For later moments of 

time (Fig. 2 b, curves 13-15), the temperature distribution does not have any pronounced extremes; 

a similar picture can be seen for the stress wave (Fig. 3 g).  

Because the parameter   in this paper is chosen sufficiently large, then the chemical reaction 

proceeds as long as there is an introduced impurity. After the pulse ends, product formation 

continues until the reaction rate becomes close to zero as a result of temperature decrease. The 

impurity concentration at the left boundary decreases from 42% to 7% at the time interval 

 0,03...0,07   (Fig. 3 a). By the time 0,07   maximum value of C  is located at some distance 

from the treated surface and the extreme in the strain wave corresponds to it (Fig. 3 c, area in a 

larger scale). As noted, the gray circles illustrate the mutual influence of concentration and strain 

waves. These points are the end points on the graph for the impurity concentration for each time 

moment. So the strain wave to the right of these selected points propagates independently of C . For 

moments of time D   (more pronounced near time imp  ), we can see additional extremes on 

the stress and strain waves, which correspond to each other (Fig. 3 b, f, white circles).  

 

  

Fig. 2. Temperature distribution at different time moments  : 1 – 0,004; 2 – 0,005; 3 – 0,006; 4 – 

0,008; 5 – 0,009; 6 – 0,01; 7 – 0,015; 8 – 0,02; 9 – 0,025; 10 – 0,03; 11 – 0,035; 12 – 0,04; 13 – 0,05; 

14 – 0,06; 15 – 0,07. 
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Fig. 3. The results of solving a coupled problem: distribution of introduced material concentration (а), 

strain (b, f), mass content of the reaction product (d), stress (c, g) at different time moments  : 1 – 

0,03; 2 – 0,035; 3 – 0,04; 4 – 0,05; 5 – 0,06; 6 – 0,07. 

 

The parameters responsible for the chemical reaction in the problem are , ,сh ch  . Figure 4 

shows the effect of heat release   in the reaction on the distributions of the studied quantities. It 

can be seen that the increase  leads to an increase in the mass content of the reaction product, 

consequently, the introduced impurity concentration decreases, the temperature increases, and the 

stresses and strain increase in the extreme regions, but near the treated surface, the strains are lower 

due to a decrease in the impurity concentration (Fig. 4 d, area on a larger scale). 

 

   

  
Fig. 4. Influence of the parameter   value. Distribution of introduced material concentration (а), mass 

content of the reaction product (b), temperature distribution (c), strain (г), stress (д) at different values 

of : 10,0 (solid line); 100,0 (dashed line); 200,0 (dotted line); time moment 0,035  . 
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At a small value of  , for example 10   (Fig. 4, solid line), the chemical reaction proceeds as 

long as the temperature rises due to the input energy. Then there is not enough heat to continue the 

reaction. Thus, by the time 
imp   the distribution 

PС  takes its final form, the reaction stops.  

The increasing parameter values ,сh ch   also leads to increase the reaction product 

concentration, temperature, strains and stresses and the impurity concentration decreases. The 

parameter 
сh  has a very strong influence on the value of mass content of product. If the value of 

this parameter is small, then value of 
PС  also becomes insignificant. In this case, even the 

maximum heat release parameter in the reaction   does not lead to visible changes in the graphs of 

temperature, strains, stresses, and impurity concentration, i.e., the slow formation of the product in 

the reaction will have almost no effect on their distribution. 

 

6. Conclusion 

 

Thus, the paper presents a coupled non-isothermal model of the process of material introduction 

into the target surface under conditions of surface treatment by a particle flux. The model takes into 

account the interaction of different-scale processes: impurity diffusion, heat propagation, and 

mechanical disturbances. In addition, it involves chemical interaction between the introduced 

impurity and the substrate material during processing. It was found that the interrelation of these 

processes leads to the appearance of distortion of the mechanical wave. There is a maximum in the 

temperature wave at some distance from the treated surface at times close and comparable to the 

pulse action time; in this time interval, the temperature in the depth of the target is higher than on 

the surface. The impurity concentration distribution shows no visible distortions, but, like the heat 

flux, it has a wave character. Note that the chosen set of model parameters is of great importance, 

and perhaps a different combination of them will reveal new, or strengthen already known, 

interactions of the considered processes. The area of variation of the parameters depends not only 

on the properties of the materials and chemical reaction conditions, but also on the processing 

regime. 
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