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The issues of modeling the thermomechanical behavior of a polymer material during cooling accompanied by 

crystallization are considered. The proposed approach is applied to the problem of deformation upon cooling of an 

infinite plate made of low-pressure polyethylene during crystallization. Mathematical formulations of thermal kinetic 

and thermomechanical boundary value problems are formulated. The results of the numerical solution of a coupled 

heat-kinetic problem, including the non-stationary heat conduction equation and the crystallization kinetics equation, 

are presented, provided that the characteristics of the material depend on temperature. When solving the boundary 

value problem of thermomechanics, the previously obtained phenomenological nonlinear constitutive relations are 

used, which continuously describe the behavior of a polymer material in a wide temperature range, including the 

range of phase transformations. The defining relations are obtained using the Peng – Landel potential. A weak 

variational statement of the boundary value problem, constructed using the Galerkin method, is presented. A 

linearization procedure is carried out, which makes it possible to reduce the solution of an initially nonlinear 

boundary value problem to solving a sequence of linear problems with relatively small increments of the 

displacement vector components. In this case, the linearization of geometric relations is performed by superimposing 

small increments of deformations on finite ones, linearization of the constitutive relations - expansion in a Taylor 

series with subsequent retention of linear terms under the assumption that the increment of the components of the 

strain tensor is small. An approach is demonstrated that naturally takes into account the small increments of 

temperature and structural deformations arising in the material. Aspects of the numerical implementation of the 

created algorithm based on the finite element technology of constructing a discrete analogue of the problem under 

consideration are analyzed. The results of solving the problem under discussion in a linear formulation under the 

assumption of small deformations and in a nonlinear formulation are presented and compared. 
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1. Introduction 

 

Products made of polymeric materials are widely used in various industries. One of the stages in 

this production is the stage of forced cooling accompanied by the crystallization of the material. 

High technological stresses as a result of temperature and deformation inhomogeneities often lead 

to decreasing in the performance of products and even to their destruction at the manufacturing 

stage. In this regard, the problem of modeling thermomechanical processes in polymeric materials 

under conditions of phase transitions is of topical importance. The models of the behavior of such 

media should include constitutive relations that describe in a unified manner the relationship 

between the stress and strain tensors in a wide range of temperatures, including the temperatures of 

phase transformations. Due to the complexity in nature of real processes and the geometric variety 

of product shapes, the study of the patterns of forming technological stress fields is only possible by 

numerical methods. Therefore, it is of great importance to create a practical numerical algorithm for 

solving the thermomecanical boundary value problem of crystallizing polymer medium. 

A large number of publications are devoted to the modeling of processes in curing polymer 

materials, [1–20] being only a few of them. A common feature of the models proposed in [1–3] is 

the aspiration to obtain the possibility of a simple estimate of residual stresses. Some authors, when 

constructing models of thermomechanical behavior, assume that the crystallizing polymer shows 

itself as an elastic material with small deformations. For example, in [4], with this assumption, the 

constitutive relations for amorphous-crystalline polymers were developed. In [5–12], the description 

of the polymer reaction to thermomechanical action was carried out within the framework of finite 

deformations. Many models are based on the elastic-viscoplastic approach [7–9, 13] and are 

intended either for specific polymer materials [5, 13], or are limited only by certain types of stress-

strain state. For example, in [6] the model is aimed at representing the mechanical behavior of the 

polymer in the temperature range, including glass transition temperatures, for the cases of uniaxial 
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loading and plane stress state. In [8], a coupled thermomechanical theory is proposed to simulate 

the dependence of the response of amorphous polymers on the strain rate and temperature under 

conditions of large strains.  

At present, interest in the problems of describing the thermomechanical behavior of polymers 

during phase transformations is due to their widespread use in cases where shape memory is 

required in structural materials. In polymers, this effect is associated precisely with phase or 

relaxation transitions. The work [14] simulates the thermomechanical behavior of polymeric 

materials under conditions of relaxation transitions. The publications [11, 12, 15–20] are devoted to 

the studies of polymers response with shape memory effect to deformation effects. Thus, in [11, 

12], a model of the behavior of a material is constructed, which undergoes a transition from a highly 

elastic state to a vitrified state and back during deformation and a concomitant change in 

temperature. The computation results are compared with experimental data.  

It should be noted that the proposed models are often based on the hypothesis of small 

deformations and are intended to describe changes in the properties of polymer materials in a fairly 

narrow temperature range and with a specific mechanism for achieving the shape memory effect 

and cannot display other thermomechanical effects. 

 

2. Modeling the thermomechanical behavior of a crystallizing plate 

 

In order to illustrate the possibilities of the defining relations proposed by the authors earlier 

[21], formulated for conditions of finite deformations, in this work, we solved the model problem of 

deformation of an infinite plate of constant thickness made of low-pressure polyethylene under 

cooling. First, the material of the body under consideration was heated to a temperature exceeding 

the melting point. Further, the plate was cooled, and crystallization processes were being performed 

in the material accompanied by the heat release. It was required to investigate the evolution of the 

deformed state of the body from the effect of temperature and shrinkage deformations arising in the 

process of cooling and crystallization. 

The problem was solved in two stages. At the first stage, the boundary value problem of 

unsteady thermal conductivity was solved paing attention to the crystallization of the material. At 

the second stage, on the basis of the data obtained on the evolution of the temperature fields and the 

degree of crystallization along the thickness of the platethe solution of the boundary value problem 

of crystallizing polymer was carried out. Since the process of deformation of the plate was 

accompanied by large temperature and shrinkage deformations, the problem was considered within 

the framework of the theory of finite deformations.  

 

2.1. Thermal kinetic problem solution 

 

The formulation of the problem within the framework of the well-known thermal kinetic model 

included: 

– unsteady heat conduction equation  

 

          k

T T
с T T T T Q t

t x x
   

   
  

   
,        0,x L ; (1) 

 

– equation of kinetics of nonisothermal crystallization [22, 23]  

 

     0exp 1 e

m

d U
K A T

dt RT T T


  

 
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 
,         0,x L ; (2) 

 

– boundary and initial conditions 
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In equations (1–3) the following notations were used: t - time; x  - coordinate along the thickness of 

the plate; T  - temperature;   - the density of the material; c  - specific heat capacity;   - 

coefficient of thermal conductivity; 
kQ  - the thermal effect of the crystallization reaction;   - the 

degree of crystallization of the material, which during the process changes from zero to a certain 

limiting value, depending on temperature and representing the equilibrium degree of crystallization 

e , t    ; R  - universal gas constant; 0, , ,K U A  - macrokinetic constants determined 

experimentally; h  - heat transfer coefficient; mT  - melting temperature; amT  - ambient temperature; 

0T  - initial temperature; L  - half the thickness of the plate. 

A numerical calculation was carried out for a plate made of low-pressure polyethylene. The 

values of its thermophysical and mechanical parameters were taken from the literature [24–26], the 

macrokinetic constants included in the equation of the kinetics of nonisothermal crystallization are 

given in Table 1. 

When solving the thermal kinetic problem, the dependence of the specific heat capacity, thermal 

conductivity coefficient, density and equilibrium degree of polyethylene crystallization on 

temperature was taken into account (Table 2) [24, 25].  

Table 1. Values of macrokinetic constants. 

K , s
–1

 U , J / mol  , K 
mT , K 0A  kQ , J / kg 

2,3310
4 30200 182 415 82 164000 

Table 2. Values of thermophysical characteristics and equilibrium degree of crystallization depending on 

temperature. 

Т , К с , J / (kgК)  , W / (mК)  , kg / m
3
 

e  

283 2250 0,228 947 0,9 

341 2325 0,226 923 0,87 

399 2395 0,182 832 0,41 

457 2402 0,180 794 – 

 

The temperature boundary value problem was solved numerically using the finite difference 

method. Due to symmetry, only half of the structure was considered. The plate thickness was 

assumed to be 20 mm, the initial body temperature was 450 K. Since the problem is of a model 

nature, taking into account the temperature dependence of the heat transfer coefficient is not of 

crucial importance for demonstrating the capabilities of the proposed approach. Therefore, the heat 

transfer coefficient was assumed to be constant, approximately corresponding to the case of a 

laminar infinite flow of water around a smooth plate at a speed of 0.5 m / s [27]. Its value was equal 

to 450 W / (m
2
 K). The mesh used contained 100 coordinate nodes. The time step was 0.5 s. The 

counting process was terminated when the equilibrium degree of crystallization was reached at all 

points.  

The solution of the kinetic equation of nonisothermal crystallization was found at each step of 

the algorithm for solving the boundary value problem and was determined numerically by the 

fourth-order Runge-Kutta method [28]. To ensure the stability of the counting, the time step was 

equal to 0.005 s. 

Figure 1 shows the distribution curves of temperature and degree of crystallization for different 

points in time. 
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Fig. 1. Curves of temperature distribution (a) and degree of crystallization (b) over the plate 

thickness at different times, t  s: 200 (curves 1), 400 (2), 600 (3), 800 (4), 1000 (5). 

 

2.2. Solution of the boundary value problem of mechanics of crystallizing polymer  

 

To solve the problem of mechanics, a "weak" variational statement was used, which for the 

discussed case has the form [29]: 

 

0

0 0II

V

dV  P C , (4) 

 

where IIP  is the Piola – Kirchhoff tensor of the second kind, С is the Cauchy – Green strain tensor, 

and 0V  is the initial volume of the body. The advantages of the variational formulation include the 

fact that it has been formulated in the initial configuration, which greatly simplifies the construction 

of numerical algorithms. 

The relationship between the Piola – Kirchhoff tensor, which characterizes the stressed state of 

the material, with the elastic potential W was determined as 

 

  2II t tW    P G G ,  

 

where ×

tG  is the tensor of the Cauchy – Green strain measure at the current time moment t. The 

relationship between the tensor of the Cauchy – Green strain measure and the Cauchy – Green 

strain tensor was given by the expression   2t

 C G g , where g is the metric tensor. The 

constitutive relations for an elastic crystallizing polymer material were taken in the form [29]: 

 

          
 

 
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T 1
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   


       G G F G F . (5) 

 

In (5) 

T



 
  
 

F  is the place gradient tensor describing the transition from the configuration 

corresponding to the moment in time   to the current configuration, 


  is the Hamilton operator 

defined with respect to the configuration corresponding to the moment in time  ,   is the radius 
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vector of the point in the current configuration,  
1




F ,  

1
T





F  are the inverse values of the gradient 

tensor the place F  and the transposed tensor, ,a crW W  are the elastic potentials of the amorphous 

and crystalline phases of the material. 

Using the two-constant Peng – Landel potential [30] as the elastic potential, the expression for the 

relationship between the Piola – Kirchhoff tensor of the second kind 
IIP  and the tensor of the 

Cauchy – Green strain measure was written as follows: 
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Where    
1 1T

t t  

    G F G F , , , ,a a cr crB B   are the mechanical characteristics of the 

amorphous and crystallized part of the material, respectively, 1 3,I I  are the first and third main 

invariants of the second-rank tensor, g  is the metric tensor. 

Formulation (4) is nonlinear, since it is based on nonlinear geometric and physical relationships. 

To create a numerical algorithm for determining the deformed state of a polymer plate under 

cooling, taking into account both the crystallization of its material and the resulting temperature and 

structural deformations, the initial problem formulation was linearized. This made it possible to 

reduce the procedure of obtaining a solution 

of the problem to the analysis of the sequence 

of solutions of linear elastic boundary value 

problems in the framework of the theory of 

small deformations. The presence of 

temperature and structural deformations of the 

material inherent in the processes under 

consideration is especially important in the 

mathematical formulation of physical 

relations in the case of using nonlinear 

equations of state. In [31], an approach is 

described, which is based on the procedure of 

linearization of physical relations under the 

assumption of a small value of temperature 

deformations at the considered transition. 

The construction of linearized geometric 

relationships is carried out as follows. First, 

the original movement of the body is 

decomposed into a set of small movements 

caused by small increments of external influences. According to the idea of superimposing small 

deformations on finite ones [32], the movement of a body from an initial configuration to a final 

one is represented as a superposition of its movements through intermediate configurations. In this 

case, the displacements of the points of the body at an arbitrary moment of time are recorded as the 

sum of their accumulated and small displacements during the transition from the intermediate 

configuration to the final one. 

It is assumed that in the process of deformation, the body sequentially passes through three 

configurations (Fig. 2). The transition from the initial configuration to the intermediate one is 

 

0U  

R 

r 
u 

I 

II 

III 

  

 
 

Fig. 2. Configurations sequentially acquired by 

the body in the process of deformation: I - 

initial, II - intermediate, III – final. 
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determined by the displacement vector 
0U , and from the intermediate to the final one - by the 

vector of small displacements u . 

Taking into account the smallness of the displacements of the last transition u , the Cauchy – 

Green tensor of elastic deformations, which describes the transition from the initial configuration to 

the final one, can be represented as a sum of two terms: 

 

 T

0 0 0E   C C F e F . (7) 

 

Here: 
0 0,  C F  are tensor of elastic deformations and tensor gradient of place, describing the 

transition from the initial configuration to the intermediate one; E  e e e  is tensor of small elastic 

deformations arising at the transition from the intermediate configuration to the final one, and 

represented as the difference of total deformations 

T
0 0

2
  

     
  

e u u  and deformations 
e , for 

the amorphous phase caused by temperature deformations, and for the crystalline phase - both 

temperature and structural deformations of the material at the considered transition; the Hamilton 

operator 
0

  is written with respect to an intermediate configuration. Thus, the obtained relations (7) 

began to linearly depend on the vector of small displacements u , which determine the transition to 

the final configuration. 

The procedure for linearizing the physical relations consisted in expanding expression (6) in a 

Taylor series taking into account the linear terms. Under the assumption of bounded deformations 

in the process under consideration, the linearized physical relations were written as follows 

 

 

                
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Here: ,  ,  а cr cr

s e e e  - tensors describing the contribution of small temperature and structural 

deformations arising in the transition from an intermediate configuration to a final one: 
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T TK K  - coefficients of thermal 

expansion for amorphous and crystalline phases; k  - coefficient of structural shrinkage; 0C  - the 

tensor of the transition from the configuration corresponding to the time instant τ to the intermediate 

one; 4 a
D , 4 cr

D  are tensors of the fourth rank of the "tangential stiffness" of the amorphous and 

crystalline phases, the components of which depend on 0C  and 0C  and are determined as a result 

of linearization of relations (6). 

As a result of the linearization procedures, the variational setting (4) was reduced to the form: 
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where * T

0 0  C F e F . 
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Expression (9), formulated with respect to the increment of displacements arising from small 

increments of temperature and structural deformations, has become linear. Determination of the 

evolution of the displacement field was reduced to solving a sequence of linear problems with 

respect to increments of displacements at time steps. 

Obtaining a solution to boundary value problems in mechanics for bodies of complex spatial 

configuration is impossible without the use of numerical techniques. Among the existing numerical 

approaches, the finite element method [33] is currently the most widely used, which was chosen to 

construct a discrete analogue of the problem under consideration. The finite element approach to the 

approximation of physical relations leads to linear algebraic relations, which in matrix form have 

the form: 

 
               

        
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0 0
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 

        

      

U x,U

U x,U

  

 

where  e  is the vector of nodal unknowns (increments of displacements at the current time step), 

 0,B  x U  is the matrix of element gradients,  аC  is the vector that takes into account the effect 

of increments of temperature deformations for the amorphous phase;  crC  is the vector, taking 

into account the influence of increments of temperature and structural deformations for the 

crystalline phase,  0

aD  U ,  0

crD 
  U  are matrices of "tangential" stiffness of the amorphous 

and crystalline phases of the material. 

The last ratio can be converted to the form: 
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Relation (9) can also be written in matrix form: 
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where the symbol 
e

  means the summation over the elements,  
e

k  is the local stiffness matrix of 

the element,  
e

Pf  and  
e

f  are the local vectors of the nodal forces caused by the accumulated 

stresses, thermal and structural deformations: 
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As a result of assembly for the entire ensemble of finite elements that form a mesh analogue of 

the computational domain, a global system is obtained: 

 

       0( ) pK U u F F  , (10) 

 

where  0( )K U  is the global matrix of displacements of the system, which has symmetry and 

depends on the vector of accumulated displacements 
0U ;    ,  pF F  - global vectors of 

"fictitious" efforts caused by the stresses accumulated to the current time step and the temperature 

and structural deformations arising at the considered transition. 

Thus, the determination of the evolution of the deformed state of the plate under cooling, taking 

into account the crystallization of the material under conditions of large deformations, has been 

reduced to solving a sequence of linear problems (10) formulated with respect to increments of 

nodal displacements. In this case, the operator on the left side of (10) should be redefined at each 

time step. Changes in the components of the Cauchy strain tensor and the Piola – Kirchhoff tensor 

upon transition to the next configuration are found from relations (7) and (8). When calculating the 

displacements, it is convenient to take the time grid to coincide with the time grid of the 

temperature problem.  

Table 3. Values of mechanical constants. 

a , Pa aB , Pa 
cr , Pa crB , Pa 

4,1910
6 

2,0810
8
 5,9310

7
 1,7810

8
 

 

The values of the parameters of the mechanical model (6) used in the calculations are shown in 

Table 3. The following values of the coefficients of thermal expansion for the amorphous and 

crystalline phases and the coefficient of structural shrinkage of the material were taken [24, 34]: 
52,8·10a

TK  К
–1

, 50,9·10cr

TK  К
–1

, 0,1k   . The finite element analogue contained 100 nodes. 

The time step was 0.5 s. 

The distributions of displacements over the thickness of the plate at different times are shown in 

Figure 3. For comparison, curves are shown that correspond to the solution of a similar problem on 

the basis of linear physical and geometric relationships [22]. As can be seen from the graphs, with 

increasing time, the discrepancy between the results obtained for the nonlinear and linear 

formulations of the problem under consideration increases. 

 

Fig. 3. Time dependences of displacements of characteristic points having different coordinates, 

m: 0.005 (curves 1), 0.0075 (2), 0.01 (3); solid lines correspond to the results obtained by the 
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nonlinear model, dashed lines - by the linear. 

3. Conclusions 

 

The proposed approach based on the procedure of linearization of the variational formulation of 

the thermomechanical boundary value problem of crystallizing medium made it possible to 

investigate the process of evolution of the deformed state in a cooled polymer plate under 

conditions of large deformations. The results obtained indicate that by the time the crystallization 

process is completed, the deformations in the plate reach 9.8%, which indicates the need to solve 

the problem under consideration within the framework of the theory of finite deformations. It was 

brought out that the data calculated by the nonlinear constitutive relations constructed by the 

authors earlier differ from those calculated within the framework of the linear model, while their 

discrepancy increases during the entire crystallization process. 
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