
Computational Continuum Mechanics. 2021. Vol. 14. No. 1. pp. 30-39  DOI: 10.7242/1999-6691/2021.14.1.3 

 

Email addresses for correspondence: surovvictor@gmail.com  
 

© The Author(s), 2021. Published by Institute of Continuous Media Mechanics.  

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0),  

which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

ON ONE VERSION OF THE GODUNOV METHOD FOR CALCULATING 

ELASTOPLASTIC DEFORMATIONS OF A MEDIUM 

 
V.S. Surov 

 
South Ural State University (NRU), Chelyabinsk, Russian Federation 

 

Godunov's hybrid method suitable for numerical calculation of elastoplastic deformation of a solid body 

within the framework of the classical Prandtl-Reis model with the non-barotropic state equation is described. Mises’ 

fluidity condition is used as a criterion for the transition from elastic to plastic state. A characteristic analysis of the 

model equations was carried out and their hyperbolicity was shown. It is noted that, if one takes the Maxwell-

Cattaneo law instead of the Fourier law, then the Godunov hybrid method can be applied to calculate the deformation 

of a thermally conductive elastoplastic medium, since in this case the medium model is of a hyperbolic type. The 

algorithm for solving the systems in which there are equations that do not lead to divergence form is described in 

detail; Godunov's original method serves to integrate systems of equations represented in divergence form. When 

calculating stream variables on the faces of adjacent cells, a linearized Riemannian solver is used, the algorithm of 

which includes the right eigenvectors of the model equations. In the proposed approach, the equations written in 

divergence form look like finite-volume formulas, and others that do not lead to divergence form look like finite-

difference relations. To illustrate the capabilities of the Godunov hybrid method, several one- and two-dimensional 

problems were solved, in particular, the problem of hitting an aluminum sample against a rigid barrier. It is shown 

that, depending on the rate of interaction, either single-wave or two-wave reflections described in the literature can be 

implemented with an elastic precursor.  
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1. Iintroduction 
 

Examples of using the Godunov method [1–3], originally proposed by Godunov for numerical 

integration of gas-dynamic problems [4], in modeling elastoplastic deformation of the medium are 

known from literary sources. So, in [1] according to Godunov's scheme of the first order of 

accuracy, flat and axisymmetric problems of the dynamics of compressed media with irreversible 

volumetric and shear deformations on arbitrary movable grids were solved; finite-difference 

relations were given, the problem of the decay of an arbitrary discontinuity was described in detail. 

In [2], UNO (Uniformly Non-Oscillatory)modification of the Godunov method, which has a second 

order of accuracy, was used for the medium in neglect of its final deformation. The gap decay 

problem, which is present in the algorithm of the method, was solved involving Riemann invariants. 

As in [1], work [2] considered the barotropic equation of state, so the energy equation was omitted. 

In [3], the spatial sampling of equations on a moving Eulerian grid was carried out using the 

Godunov method. To improve the accuracy of the scheme, piecemeal linear replenishment of grid 

functions was performed using an interpolation procedure of the MUSCL type, generalized to 

unstructured grids. The main idea of the approach was to split the system of defining equations into 

hydrodynamic and elastoplastic components. The equations of hydrodynamics were solved on the 

basis of a clearly implicit absolutely stable scheme, and material equations (elastoplastic 

component) using a two-step Runge-Kutta scheme.  

In the present paper, the Godunov hybrid method (GHM) has been used for numerical 

integration of a hyperbolic system describing elastoplastic deformation of a solid with the equation 

of the state of the general non-barotropic form, which was previously applied by the author in 

numerical modeling of currents of heterogeneous mixtures [5]. Note that GHM is intended for 

integration hyperbolic systems in which there are equations written both in divergent form and not 

reduced in this form, while the original Godunov method assumes only the solution of equations 

represented in divergent form. Environment settings on the faces of adjacent cells were determined 

using a linearized Riemannian solver [6]. For the same purposes, the Riemann problem solver based 

on the characteristic approach can be used [7]. Since further in the work the integration areas are a 

combination of rectangular sub-areas, then a simplified version of GHM [8] will be considered 
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when integrating the equations. In the presence of curvilinear sub-regions, it is necessary to subject 

to a finite-volume version of the GHM [9]. 
 

2. Characteristic analysis of model equations 
 

Equations that describe the elastoplastic deformation of a solid within a model Prandtl-Reis 

[10] have the form 
 

  0,
i

t i x
u 

   

 
    0,

j
i i j i jt x

u u u
 

    

 

 
    0,

j
j i i jt x

e u e u
 

     

 

(1)

 

, ,
3

2 ,
ki j t k i j x ik jk j k ik i j i j k k i js u s s s s e e

 
          

   

 , ,

1

2
,

j ii j i x j xu u       , ,

1

2
,

j ii j i x j xe u u 
 

 

Here: p – pressure; ui are the components of the velocity vector; ρ is the density; ε and 
1

i ie u u


    

– specific internal and total energy of the medium; i j – stress tensor, which is presented in the form 

of a ball 
1

3
iip     and a deviation i js  parts i j i j i js p    , where i j  is the Kronecker delta; i je  

– strain rate tensor; μ – shear modulus; λ(t) – parameter; index after comma means differentiation 

by the corresponding variable. 

To simplify the presentation, we will limit ourselves to a two-dimensional case. We rewrite 

system (1) in quasi-linear form, and instead of index symbols we use coordinate: 
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 – is the hydrodynamic speed of 

sound in a solid with a calorical equation of state of general form ( , )p    . Note that under the 

condition xx xy yys s s      , the solid behaves like a compressible liquid, since in this case the 

system (2) coincides with the equations of hydrodynamics. As a criterion for the transition from 

elastic to plastic co-standing, the Mises flow condition was used, according to which, if there is 

inequality 
 



V.S. Surov Computational Continuum Mechanics. 2021. Vol. 14. No. 1. pp. 30-39 DOI: 10.7242/1999-6691/2021.14.1.3 

32 

2 2 2 2

s

1

3
,xx xy yy xx yys s s s s      

 

where 
s  – is the yield strength of the material at uniaxial tension-compression, then the 

components of the stress tensor deviator are corrected by "fit" on the yield surface – division by 

  [11]. Parameter λ characterizes the total operation of plastic deformations and is calculated by 

the formula 
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The system (2) is rewritten in vector-matrix form 
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Here   is transposition operator. The eigenvalues of the Ax and Ay matrices are as follows: 
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Thus, in a solid body there are two speeds of sound: the first c1 is elastic; the second c2 is shear. 

Eigenvectors – columns of the underlying matrices 
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corresponding to eigenvalues of matrices Ax and Ay are linearly independent, therefore the system of 

equations (2) under consideration belongs to hyperbolic type [12]. 

The GHM discussed in the work can also be used to calculate the deformation of a thermally 

conductive elastoplastic medium. For this case, the energy conservation law equation of (2) takes 

the form 
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where xw  and yw  projections of heat flux density vector on coordinate axes. In order to remain in 

the framework of the hyperbolic model, instead of the Fourier law, it is necessary to use its 

hyperbolic analogue, that is, the Maxwell-Cattaneo law [13]: 
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included in equation (3) take the form: 
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The eigenvalues of the Ax and Ay matrices are as follows: 
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2 2

1

1 1 4
,

2
y p yy yc c k B s B A

  
       

   
    2

2 ,y xx yyc s s


 


   

2 2

3

1 1 4
,

2
y p yy yc c k B s B A

  
       

     

 
2

2
2 2 22 4 4 1 4

4 .y p yy yy yyA k B c k B c s B k s B s B 

       
                           
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Thus, in the model of a thermally conductive solid, in addition to the elastic (c1) and shear (c2) 

soon-sound networks, there is also a speed of movement of the heat wave (c3). Eigenvectors 

corresponding to eigenvalues (7) are linearly independent, so the system of equations in question is 

also of the hyperbolic type. 
 

3. Godunov hybrid method 
 

To integrate equations (2), let us split the original system into two subsystems. To the first, we 

attribute the equations written in divergent form, to the second – all the rest. The first subsystem has 

the form 
 

 0,
yx

t x y



  

FFU
+ + =  (8) 

where

  , , , ,u v e   


U     2, , , ,x xx xy xx xyu p s u uv s u e p us vs   


        F  

 2, , , .y xy yy xy yyv uv s p s v v e p us vs   


        F  

 

The corresponding finite-volume expressions approximating (8) and linking the desired parameters 

on the new time layer with the corresponding values on the previous t are: 
 

 
1/2, 1/2, , 1/2 , 1/2,

,

, ,

i j i j i j i ji j

i j

i j i j

t,
x y

   
  

    
   

U U
   

 (9) 

where

  2, , , ,xx xy xx xyRU P S RU RUV S U RE P US VS


          

 2, , , .xy yy xy yyRV RUV S P S RV V RE P US VS


          

 

"Large" values [4], i.e. R is the medium density; U, V are components of the velocity vector; P – 

pressure; , ,xx xy yyS S S  – components of the voltage tensor deviator related to the faces of adjacent 

cells, determining from the solution of the corresponding Riemann problems using a linearized 

Riemannian solver (LRS) [8], the formula for which in the direction of the Ox axis has the form 
 

  ( ) 2

1
sign ,

2
L R k k k

k

= a  U U X  (10) 

 

where Xk are the right eigenvectors of the matrix Ax are the columns of the first matrix (5), 
 

( ) 2 ( )/2= ( , , , , , , ) ,L R xx xy yy L+Ru v p s s s 

U     
1

,
2

L R=U U + U  

1/2, = ( , , , , , , ) ,L xx xy yy i ju v p s s s 

U    1/2, = ( , , , , , , ) .R xx xy yy i ju v p s s s 

U  

 

The corresponding LRS formula in the direction of the axis Oy has the form 
 

  ( ) 2

1
sign ,

2
D T k k k

k

= b  V V Y  (11) 

 

where Yk are the right eigenvectors of the matrix Ay are the columns of the second matrix (5),
 
 

 

( ) 2 ( )/2= ( , , , , , , ) ,D T xx xy yy D Tu v p s s s 

 V     
1

,
2

D T=V V + V  

, 1/2= ( , , , , , , ) ,D xx xy yy i ju v p s s s 

V    , 1/2= ( , , , , , , ) .T xx xy yy i ju v p s s s 

V  
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The values of the constants ak and bk included in (10) and (11) are determined from the systems of 

linear equations 
 

,k k

k

a  X = U    ,k k

k

b  Y = V  

 

where R L U = U U , T D V = V V . The "large" values that are included in (9) were calculated 

from the ratios: 
 

 
1/2, 

, , , , , ,xx xy yy i j
R U V P S S S =




 

, 1 1/2,

, 1 1/2,

1/2, 1 1/2, 1 1/2,

( , , , , , , ) , ( ) 0,

( , , , , , , ) , ( ) 0,

( , , , , , , ) , ( ) 0, ( ) 0;

xx xy yy i j x i j

xx xy yy i+1 j x i j

xx xy yy i j x i j x i j

u v p s s s если u c

= u v p s s s если u c

u v p s s s если u c u c

















  

  


 


   

 

 
, 1/2

, , , , , ,xx xy yy i j
R U V P S S S =




 

, 1 , 1/2

, 1 1 , 1/2

, 1/2 1 , 1/2 1 , 1/2

( , , , , , , ) , ( ) 0,

( , , , , , , ) , ( ) 0,

( , , , , , , ) , ( ) 0, ( ) 0.

xx xy yy i j y i j

xx xy yy i j y i j

xx xy yy i j y i j y i j

u v p s s s если u c

= u v p s s s если u c

u v p s s s если u c u c













 



  

  


 


   

 

 

To calculate the components of the voltage tensor deviator, write in finite difference form the 

equations of the second subsystem as 
 

           
,

, 1/2, 1/2, , 1/2 , 1/2

, ,

, ,

i j

xx xx xx xx xx xxi j i j i j i j i j

i j i j

i j i j

s s S S S S
u v

t x y

   
  

  
  

 

   , 1/2 , 1/2 1/2, 1/2, 1/2, 1/2, , 1/2 , 1/2

,,
, , , ,

2
2 2 ,

3

i j i j i j i j i j i j i j i j

xy xx i ji j
i j i j i j i j

U U V V U U V V
s s

y x x y
 

       
      

        
         

 

 
           

,

, 1/2, 1/2, , 1/2 , 1/2

, ,

, ,

i j

xy xy xy xy xy xyi j i j i j i j i j

i j i j

i j i j

s s S S S S
u v

t x y

   
  

  
  

 (12) 

     1/2, 1/2, , 1/2 , 1/22 2

2 2 ,, ,
, ,

,
i j i j i j i j

x y xy i ji j i j
i j i j

V V U U
c c s

x y
  

    
   

 
 

           
,

, 1/2, 1/2, , 1/2 , 1/2

, ,

, ,

i j

yy yy yy yy yy yyi j i j i j i j i j

i j i j

i j i j

s s S S S S
u v

t x y

   
  

  
  

 

   1/2, 1/2, , 1/2 , 1/2 , 1/2 , 1/2 1/2, 1/2,

, ,
, , , ,

2
2 2 ,

3

i j i j i j i j i j i j i j i j

xy yyi j i j
i j i j i j i j

V V U U V V U U
s s

x y y x
 

       
      

        
         

 
 

from which are calculated      
, ,,

, ,
i j i ji j

xx xy yys s s , which completes the computational cycle. 

 

4. Numerical simulation results 
 

When testing the GHM described above, a two-way equation of state was used 
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 

 

2

0 0
,

1

p c  


 

 



 (13) 

 

previously used by the author in the study on the hydrodynamic approximation of the "oblique" 

collision of metal plates [14], where for aluminum the constants in equation (13) were relied on as 

follows: 
0c   5500 m/s; 

0   2710 kg/m
3
;    3,099 [15], which were selected from the condition 

of approximation of experimental data available in the literature. The yield strength 
s  for 

aluminum was assumed to be 0,29 GPa and the shear modulus   27,6 GPa. For the solid state 

equation used, the expression for the hydro-dynamic speed of sound is where 
 

,
p p

c





  

where

 

2

0 0c
p




  . 

As the first task, the interaction of an aluminum sample with a rigid barrier is considered, 

located at the beginning of the coordinate system (x = 0) in the one-dimensional setting. On the left 

border, the boundary condition for the hard wall gestured 
0

0
x

u

 , and the right border, at x = 0,1 

m, was supposed to be free, through which the striker material can freely flow or flow out (the 

length of the striker exceeds the time measure of the calculated area). The initial parameters at t = 0 

in the task are as follows: density ρ = ρ0, speed u = u0, pressure p0 = 0, voltage deviation (sij)0 = 0. 

For this purpose, the wall reflected wave modes described in [3] are known. So, in the speed range 

from –991 to –34 m/s, a two-wave aging mode with an elastic precursor is implemented, outside 

this velocity interval there are one-wave reflection modes.  
 

  

 
 

Fig. 1. Pressure distributions by time point t = 12 μs at interaction of aluminum striker with a rigid 

barrier with speeds:u0 = –10 (a); –200 (b); –1100 m/s (c). Solid, dashed and dashed curves are obtained on 

grids of 2000, 1000 and 500 cells  
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Figure 1 shows the pressure data p(x) obtained at the time t = 12 μs for the characteristic 

impact speeds from the above sub-areas: u0 = –10; –200; –1100 m/s. The calculations used a 

uniform grid consisting of 500, 1000 and 2000 cells. Calculations were carried out at a constant 

time step Δt = 6×10
–9

 s. As can be seen from the calculations presented, the calculated wave modes 

correspond to those described in [3].  
 

  
Fig. 2. Hydrodynamic pressure distribution (GPa) at time t = 0.32 μs a); dependencies of pressure 

(continuous curve) and spreading rate (dashed) at barrier b) at impact of aluminum striker against rigid 

barrier 

 

To illustrate the two-dimensional calculation, the problem of interaction of an aluminum 

striker with a hard barrier with a size of 0,8 4 cm is considered. Calculations were carried out on a 

rectangular grid of 150 400 cells with a constant time step Δt = 7 10
–9

 s. The initial and boundary 

conditions are the same as in the previous task. To localize the contact boundary, the marker 

method was used [16]. 

Figure 2, a–b shows the distributions of hydrodynamic pressure, as well as the dependencies 

of p(x) and u/v0(x) spreading speed at the barrier at time t = 0,32 μs at impact speed v0 = 1000 m/s. 
 

5. Conclusion 
 

To integrate the hyperbolic nondivergent system of equations, describing in the framework of 

the classical Prandtl-Reis model, the elastoplastic deformation of the medium, a Godunov hybrid 

method is proposed. When calculating stream variables on the faces of adjacent cells, a linearized 

Riemannian solver is used, the algorithm of which uses the right eigenvectors of the equations of 

the model. The equations written in divergent form were approximated using finite-volume 

formulas, and for the others, that is, not reduced to a divergent form equations, finite-difference 

relations were used. It is confirmed that, if, instead of the Fourier law we take the Maxwell-

Cattaneo law, then the GHM can be used to calculate the deformation of a thermally conductive 

elastoplastic medium, since the equations of the medium model in this case are also of the 

hyperbolic type. To illustrate the performance of the GHM described in the work, a number of one- 

and two-dimensional tasks are calculated. 
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