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The article reviews the current mesoscopic modeling of flows for polymer solutions and melts of various structures. It also 

demonstrates the unified structure of the rheological constitutive relation, up to a certain dissipative function. Linear and nonlinear 

effects are considered for the simple shear and uniaxial tension of polymer melts based on the modified Vinogradov and Pokrovskii 

rheological model. The model can describe with adequate accuracy the linear viscoelasticity of fluid polymer systems, as well as 

transient processes at the shear flow and uniaxial elongation. It was compared with other experimental data for the melt of an 

industrial polyethylene sample. The nonlinear viscoelastic response of a polymer material was modeled at large periodic 

deformations. The calculation results were obtained via Runge–Kutta approach  

with integrated subprograms of MATLAB IT environment. They were later compared with the experimental data for the solution of 

polyethylene oxide in dimethyl sulfoxide. The nonlinear behavior of the polymer sample manifested itself in the distortion of the 

viscoelastic response of the material at sinusoidal oscillations. In this case the shear stresses are no longer the correct harmonicas and 

a "step" appears at the leading edge of the response. Besides, their amplitude is not proportional to the amplitude of the shear. The 

paper also considers the superposition of the oscillating shear flow on the simple shear. The distortion of the viscoelastic response is 

observed here though, unlike the high-amplitude periodic deformation, the curvatures of the upper and lower half-waves of the 

response differ. Since there is still no experimental data for this case, this work expects to encourage the researchers working in the 

field of nonlinear viscoelastic properties of polymer solutions and melts for further endeavors. 
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1. Introduction 

 

Studying the nonlinear behavior of viscoelastic liquids is an essential task in the mechanics of 

continua. Even the basic experiments reveal nonlinear effects, for instance, in the simple shear flow, 

oscillating shear flow or at uniaxial elongation. The results of the research are often of purely 

practical meaning since they provide optimal modes of production storage, processing and delivery. 

Theoretically, the data on nonlinear effects is valuable as one may test the employed rheological 

models, choose the most adequate one and later implement the estimate for the liquid flow under 

study. 

Several rheological models are mentioned in literature. They describe nonlinear effects at 

uniaxial elongation and simple shear quite precisely. However, there is a need for carrying out some 

calculations and further interpreting the results of rheological measurements in the flows of a more 

complex structure, namely, at shear oscillations of large amplitude or at the superposition of 

stationary shear and oscillating flows. For this purpose studying complicated modes requires 

applying new mathematical methods for processing the measurement data within the framework of 

employed rheological models. 

 

2. Mathematical modeling in the rheology of polymer media 

 

The application of the data accumulated in science on the rheology of polymer solutions and 

melts to the analysis of their production processes is a complex and substantial task both 

scientifically and practically. Even its partial solutions provide for the products of specified 

physical-mechanical and structural characteristics. Polymer liquids (solutions or melts) possess a 

complex entangled structure. Thus, for their modeling they use rheological defining relations of 

several time and spatial scales. Until now there the defining equations that  could generalize all the 

practicalities of polymer media flows have nоt yet been created. Researchers and engineers use the 

equations which describe either the polymer flow peculiarities they are keen on or some 

COMPUTATIONAL 
CONTINUUM MECHANICS 

ВЫЧИСЛИТЕЛЬНАЯ 
МЕХАНИКА СЛОШНЫХ СРЕД  



A.A. Laas, M.A. Makarova et al. Computational Continuum Mechanics. 2021. Vol. 14. No. 1. pp. 12-29 DOI: 10.7242/1999-6691/2021.14.1.2 

13 

particularcases. It must be noted that numerous defining relations have been offered,  but only some 

of them are applied to solve the tasks on polymer processing.  

Traditionally, rheological models verification [1–9] begins with considering the modes of 

stationary shear deformation on their basis and periodic oscillations of small amplitude. 

Nevertheless, these simple deformation types are not sufficient to represent  the processes in the 

industrial processing of polymers, when substantial non-stationary deformation occurs [10–16]. 

Therefore, the next stage to develop a rheological model meant including nonlinear effects, namely, 

large periodic deformations [10, 11], which greatly expands the possibilities to explore various 

types of flows of polymer solutions and melts in industrial equipment units. The development of 

models describing nonlinear viscoelasticity is getting more and more sought-after [13–16]. 

Dynamic shear oscillating tests have been widely used in rheology of liquids with special 

features such as polymer solutions and melts, biopolymers, polyelectrolytes, suspensions, 

emulsions, gels etc. Just to name a few, measuring rheological features of low-amplitude oscillating 

flows Small-Amplitude Oscillatory Shear (SAOS) is a classical way to construct linear 

viscoelasticity relations for liquids. It has been studied thoroughly both theoretically and practically 

[2]. However, as it was stated above, the majority of real processes are accompanied by serious non-

stationary deformation, which requires studying nonlinear dynamic features of the systems under 

study. In order to picture better the nonlinear behavior of the polymer liquid, Large-Amplitude 

Oscillatory Shear (LAOS) can be applied. Experimentally both SAOS and LAOS are characterized 

by two parameters at the entrance: relative amplitude of shear oscillations 
0  and their frequency . 

However, there are substantial differences in the response of the polymer system to periodic 

oscillations defined by the features of the material. For SAOS the response looks like a sinusoid and 

the amplitude of shear vibrations is directly proportional 0 . SAOS major features are ( )G   — 

elasticity modulus and ( )G   — loss modulus. For LAOS the response of the system does not look 

like a proper sinusoid and the amplitude for such vibrations does not grow strictly proportionally at 

growing 0 . That is confirmed by experiments [17–29].  

The first works devoted to LAOS method [17–29] date back to the middle of the XXth century. 

While studying shear stresses, Fourier analysis of nonlinear viscoelastic response was carried out 

[18–25] and researchers faced significant technical challenges: when calculating high-order 

harmonics it was noticed that first signal harmonics being the components of the dynamic shear 

module, decrease at increased vibration amplitude. At that time, they presented a clear way to 

describe nonlinear viscoelastic deformations using Lissajous patterns [24]. This visualization 

technique is an alternative to the construction of time dependences of shear stresses at various 

deformation values [11]. Nowadays LAOS method is applied to verify rheological models while 

studying nonlinear deformations [11, 27]. 

Among numerous rheological models, it is worth noting those that provide for adequate 

dependences when studying both linear viscoelasticity at small periodical deformations and 

nonlinear effects at large deformations. These are Oldroyd-B models [30], Phan-Tien–Tanner ones 

(PTT) [7], Giesecus model [3], Leonov-Prokunin model [4, 31], «Pom–Pom» model [5, 8, 9], as 

well as the modified Vinogradov-Pokrovskii model [1, 6, 13–15]. We will carry out calculations in 

this work based on the latest model in order to check its applicability to describe the changes of 

polymer liquid behavior at increased deformation.  

The major adequacy criterion for the rheological model is the ability to mathematically depict 

viscometric flows. Multimode model modifications which consider the multitude of relaxation 

processes provide for the most accurate representation. In a simple case of calculating linear 

viscoelasticity at low-speed deformation all the above mentioned models are reduced to identical 

expressions for the components of the dynamic module. Thus, no significant differences are 

observed between models in the linear area. Nevertheless, at increased deformation speed and 

transferring to the nonlinear area the models demonstrate different  results. 

 First, there are different approaches to the construction of a rheological model: 

phenomenological and microstructural. Within the first approach, the object in question is 
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considered apart from its physical nature and the experiment is the only way to define its 

rheological characteristics and ties between them. For instance,  

- Maxwell model [32] shows a spring (an elastic element) connected in sequence with a force 

plunger (a viscous element) [2]. Within this model for the polymer exposed to constant load, 

the stress relaxation – time dependence looks exponential. Maxwell model can be applied 

only in the area of linear viscoelasticity;  

- Oldroyde model [30] generalizes Maxwell model for linear viscoelastic liquid flows, which 

is accompanied by a transfer of viscoelastic stresses towards the flow. This model is also 

applicable to describe only linear viscoelasticity; 

- Leonov-Prokunin model [4, 31] is based on the principles of non-equilibrium 

thermodynamics. Elastic deformations are characterized by the equilibrium thermodynamic 

state of the polymer system. Today the model is employed less frequently than others due to 

a complex transfer to the 3D flow calculations.  

The second approach to the construction of rheological defining relations is based on the 

mesoscopic approximation which rests upon the dynamics of the isolated macromolecule moving in 

the medium of solvent and other macromolecules. The following models are mesoscopic: «Pom–

Pom» model (PP), PTT models, Gysecus model etc. Mathematically, they are models in the 

differential form.  

Giesecus model [3] presented in 1982 is widely used nowadays. The model describes the 

polymer medium flow by a nonlinear differential equation that contains one parameter, which limits 

its applicability.  

РТТ rheological model [7] is one of the first models to adequately represent stationary and non-

stationary viscosimetric functions at simple shear and uniaxial elongation. Namely, when setting the 

simple shear flow, non-zero components of the stress tensor demonstrate non-monotonous behavior.  

A lot of differential equations (for instance, PTT model, Gysecus model, extended «Pom–Pom» 

(extended PP), Leonov-Prokunin model) presuppose the following tie between the extra stresses 

tensor τ  and symmetric tensor c  which shapes the structure of the studied material at some 

approximation: 

 

  G τ c I ,  

 

where G  is a scalar (null tensor) equal to the dimension of the elasticity module and I  — a unit 

tensor. 

Generally, for one relaxation process the rheological model equation сan  be  written in tensor 

form (tensor-like):  

 

    T 1
0

2

d

dt




     

c
vc c v γc cγ H c  , (1) 

 

where v  — a vector of liquid flow speed, γ  — a symmetric tensor of deformation speed,   — a 

vectorial differential operator,  H c  — a dissipative term dependent on structural tensor c ,    — 

relaxation time. Parameter   describes the non-affine deformation ( 0 2  ). When reaching peak 

values 0 and 2 the tensor derivative possesses the contravariant ( 0  , the highest convective 

derivative) and covariant ( 2  , the lowest convective derivative) forms correspondingly. For 

many polymer systems parameter   takes the zero value. On the one hand it reduces the number of 

nonlinear model parameters as well as obtains the oscillations of transient responses at high shear 

rates. On the other hand, nonzero value  contributes to a more drastic increase in viscosity at 

uniaxial elongation. For example, Giesecus and Leonov-Prokunin models under study in this work 

presuppose that congruence 0  , unlike the exponential PTT model. The particular forms of 

dissipative terms ( )H c  for the models under study are given in Table 1. 
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Table 1. Dissipative term  H с for some models (presupposing 0  ). 

  The form of the dissipative term 

The number of 

parameters 

together with 

linear 

G  and  ) 

Nonlinear 

parameters 

Oldroyd [28]  c I  2 – 

Exponential PTT [7]    exp tr 3    c c I  3   

Lonov-Prokunin [4] 
1

2 tr tr

2 3

b  
  

 

c c
c c I  

4  , v  

Giesecus [3] 2)(  c I c I  3   

Pom–Pom (PP) [5, 9] 
cF c I  3   

Extended Pom–Pom 

(XPP) [8] 
 

2

xF  c I c I  5  , 
S , q  

Modified Vinogradov-

Pokrovskii (mVP) [6] 
       

2
1 tr 3       c I c I c I

 

4  ,   

 

Table 1 also uses the following labeling: tr A  — matrix/tensor trace A ;   and   — induced 

anisotropy parameters; 
 

 

sh tr  3
exp tr  3

tr  3 1
b






      
   

c
c

c
, where   and   — viscosities of the 

polymer melt (solution) under study; 

   
2

2r
2

2 exp
1 1

1 1 t 21
3

x

S

F
q




      
      

 
    

   


   
cΛ c

Λ Λ
,  e 1

1
2 xpcF    
 

  
 Λ

Λ , 

where  tr 3Λ c . 

The contents of table 1 mean that the majority of rheological defining relations are of similar 

structure. The rheological models themselves differ due to dissipative term ( )H c  and, despite some 

discrepancies, describe the following experimental phenomena: shear viscosity anomaly, gradient 

dependences of the first and second-order differences for shear stresses, non-monotonous (going 

through the maximum) decrease of stationary viscosity at uniaxial elongation. As stated in [16], the 

estimation of dimensional parameters G and   is carried out quite easily though the values of 

nonlinear parameters have to be sorted out “manually”. It is easy for one parameter, but when there 

are more, some difficulties may arise while applying models to particular polymer liquids 

[9, 16, 33, 34]. 

 

3. Modeling in linear viscoelasticity  

 

Linear viscoelasticity is one of the most studied areas in theoretical and applied rheology [1–

5, 35]. Traditionally, the research means formulating equations for classical viscoelastic Kelvin-

Voight [36] and Maxwell [32] bodies and analyzing their behavior in the simplest transient modes, 

including a) deformation changes at constant preset stress; b) stress changes at constant preset 

deformation or constant deformation rate; c) periodic deformation due to the preset harmonic law 

[1–5]. Besides, the analysis does not present any challenge since the obtained equations (or their 

systems) are common linear differential equations that assume analytical solutions.  

To fully describe the responses of continuous medium to applied impacts, the notion of 

relaxation spectrum [1–3] is introduced. It appears to be a discrete set of relaxation times and their 

corresponding elasticity modules. The task is to define the relaxation spectrum components 

according to the results of rheological measurements. For the relaxation times and elasticity 

modules one may formulate expressions that depend on the number of the relaxation process, 

molecular mass and polymer concentration. Calculations due to such expressions comply well with 

the experimental data responding to the mode of small oscillating deformations for the samples of 

various molecular masses [3, 16, 34]. The number of considered relaxation processes may be quite 
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high, within the order of hundreds. However, it does not mean any difficulty with calculations as we 

deal with analytical expressions. Although, trying to generalize results from the linear 

viscoelasticity area for the nonlinear effects, one faces some obstacles [14]. In nonlinear cases the 

equations are quite complex and require a numerical solution. 

At a large number of relaxation processes, it consumes a lot of operating time. Therefore, now it 

is getting topical to model the relaxation spectrum for polymer systems when the number of 

relaxation processes under consideration is finite [37, 38].  

As a rule, to consider several relaxation processes in the polymer system they resort to the 

multimode approximation of the rheological model [12–18]. Thus, the point is to define the number 

of modes that will be sufficient for evaluating the constructed relations of linear viscoelasticity.  

All the parameters included into the rheological model can  be divided into two groups: those 

responsible for linear viscoelastic behavior of the system and those responsible for nonlinear 

effects. Low deformation rates correspond to the areas of linear viscoelasticityю Besides, in many 

rheological models the expressions are similar [1, 2, 34] and may contain a large number of 

components. 

The relations for the linear viscoelasticity area are easily obtained from (1). The majority of 

multimode rheological models in their tensor form are presented as following in linear 

approximation due to speed gradients and preciseness to the used values [1, 11]: 

 

 3 ,p









   σ I a  (2) 

1 2

3

d

dt

 


  γa a . 

 

Here: σ— a total stress tensor; p  — hydrostatic pressure;   и   — sets of initial values for 

shear viscosities and relaxation times of the considered processes ( 1,2, ,n   ); a  — a set of 

dimensionless symmetrical second-rank tensors. In fact, these equations are the multimode 

approximation of Maxwell model [2, 38]. 

At a simple oscillating shear flow the components of tensor γ  are connected with the amplitude 

of shear rate *

12v  as following: 

 

  

*

12

*

12

0 2 0

2 0 0

0

cos

0 0

ij t

v

v 

 
 

  
 
 

,  

 

where t  — is current time,   — oscillation frequency. After substituting this expression into (2) 

and solving the obtained differential equations one will easily find the expressions for frequency 

dependences of the dynamic module components: shear module and loss module which are 

important features for linear viscoelasticity and look as following [1, 2, 14, 15]: 
 

  
 

2

2
1 1

n

G  

 

  




 


 ,        
 

2
1

.
1

n

G 

 






 


   (3) 

 

To compare the data calculated due to expressions (3) with the experimental data, we should 

refer to works [33, 38], which studied rheological features of the industrial polyethylene melt and 

which provided the details of the experiments held. Rheological parameter values g  and   will 

be taken from these works (see Table. 2). Necessary values   are defined according to formula 

g    .  
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Table 2. Dimensional rheological parameters g  and   for the sample of LDPE Bralen polyethylene melt. 

  1 2 3 4 5 6 7 8 9 10 

g

, 

Pa 

12144

0 

35292,

2 

33442,

9 

19480,

3 

11923,

4 

5763,6

3 

2574,6

3 

800,86

5 

213,41

2 

34,686

4 



, с 

0,0013

4 
0,0052 

0,0201

5 

0,0780

4 
30,23 

1,1710

4 

4,5362

6 

17,572

2 

68,069

5 

263,68

1 

 
Fig. 1. To the comparison of calculated frequency dependences of elasticity module G  and loss module G  

with the experimental data for the sample of LDPE Bralen polyethylene melt. 

 

The results are presented in Figure 1. Figure 1 shows that expressions (3) describe the 

dependences of dynamic module components in quite a wide impact frequency range.  

 

4. The multimode modified Vinogradov-Pokrovskii rheological model  

 

One of the major tasks in polymer rheology is to consider the multiplicity of relaxation times. 

Employing the multimode approximation is required even when studying the dynamics of melted 

solutions of monodisperse polymers [31, 36–41], which is due to the structure of the polymer 

molecule resembling a long chain. According to calculations, the mode relaxation time reduces as 

the square of its number, so it has so-called “Rouse” behavior. However, as stated in [1, 2, 34], the 

higher the concentration of the polymer solution, the more tangled and coupled the molecules-

chains are. The dynamics of such a system gets considerably more complicated [1, 2] since extra 

“long-range” interactions are formed between the macromolecule segments. As a result, “super-

slow” relaxation processes appear in the system and new components emerge in the expression for 

the stress tensor [35, 36, 40–42]. 

Should the polymer be polydisperse or branched, it is getting essential to consider the multitude 

of relaxation times. Besides, the dependence type of the relaxation time for each process deviates 

from the “Rouse” type and gets more complex. Therefore, it is particularly topical to opt for a 

reliable and quite a basic model in order to describe the rheology of concentrated polymers. Within 

the mesoscopic approach, a polymer molecule is presented as a number of beads (macromolecule 

segments) tied by elastic springs. Such a system will be characterized by the beads friction 

coefficient and the balanced size of the macromolecule coil. When studying the dynamics of 

concentrated polymer solutions and melts, the model needs to be extended with the parameters that 

consider if molecules are entangled or “hooked”. 
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One of these models seems to be the modified Vinogradov-Pokrovsky rheological model [12–

15, 42–44] or so-called mVP model [46–48]. The model of the bead friction coefficient includes the 

tensor considering anisotropy induced by flow and defined by sizes and shapes of macromolecule 

coils. Works [13, 47] contain the multimode generalization of the mVP model and it is defined by 

the following expressions: 

 

  
1

3 tr ,
3

p   

 





 
    

 
σ I Ia a  (4) 

 
 T .

tr 32

3

 1d

dt



    

 

  

 

 
    v v γ a

a
a a a a   

 

Here: p  — hydrostatic pressure; σ  — a stress tensor of the polymer system; v  — a velocity 

gradient tensor;   — the mode reference number; n  — a number of relaxation modes or processes 

under consideration; a  — a symmetrical anisotropy tensor corresponding to the contribution of 

the relaxation mode number  ; tr  a  — a trace of a dimensionless tensor of secondary stresses a ; 

  — a shear viscosity coefficient for mode number  ;   — relaxation time for mode number 

. 

In the multimode generalization the dependence of induced anisotropy parameters   and   on 

tr a  is defined by the following expressions [46, 47]: 

 

  
tr

tr , 1,2
1 tr

f p

p


  

  



  


 


a
a

a
. (5) 

 

Obviously, model (4), (5) differs from the one applied in [12–15, 37] by the way induced anisotropy 

is presented. First works [6, 12, 14, 15, 43] supposed that   and   are constant and their values do 

not depend on the molecular mass and polymer concentration. Later (see [13]) when noting the 

multimode approximation of the model, these parameters were supposed to be tied with the first 

invariant of the tensor of secondary stresses by correlations different from (5): 
 

  
tr

tr , 1,2
1 tr

f p

p


  

  



  


 


a
a

a
. (6) 

 

According to the calculations, expressions (6) though providing for non-monotonous (going 

through the maximum) dependence of stationary viscosity at uniaxial elongation on elongation 

velocity, wrongly predict its asymptotic behavior. Due to (6), stationary viscosity at uniaxial 

elongation goes to its stationary value at increased velocity, while using expressions (5) given in 

[46] it goes through the maximum and decreases which corresponds better to experimental data 

[16, 31, 37, 38]. Now we deal with a new version of mVP model, it is necessary to recalculate 

viscometric functions considering expressions (5), which will be implemented in the next paragraph 

of the paper. Thus, model (4), (5) contains a set of four parameters:  ,  , f , p , which values 

should be chosen proceeding from experimental data. 

In order to choose the parameters at uniaxial elongation mode the impact of each particular mode 

has been analyzed. Stationary viscosity dependence was split into separate areas and parameter 

values f  and p  [13, 48] were defined for each area. This research has shown that f  and p  are 

monotonous functions of mode  , and they may be described as following: 

 
2 2

0 0

, .
1 ( ) 1 ( )

B P
f p 

   
 

   
 (7) 
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Here 
0  — the parameter which rules the monotonous or non-monotonous behavior of f  and p  

dependence on mode number  . Consistent with work [46], opt for 
0 1,5  . Applying expression 

(5) narrows the number of non-linear parameters for the rheological model down to two: B  and P . 

Besides, mode number   cannot be directly connected to molecular polymer features as for the 

majority of multimode generalizations for rheological correlations. Therefore, the acceptance of 

expressions (5) must be evaluated by the theoretical data correlation with experimental data. 

 

5. Viscometric functions at simple shear and uniaxial elongation  
 

In expressions (7) new parameters B  and P  are introduced. Paper [13] presents the evaluation 

of their impact on stationary shear viscosity and viscosity at uniaxial elongation and it is shown that 

stationary viscosity at elongation is the non-monotonous function of shear velocity: the value of its 

maximum increases at the decrease of parameter B . However, at 0P   the function becomes 

monotonous. Therefore, the values of parameters B  and P  impact considerably the dependence 

types of stationary shear viscosity on shear velocity and stationary viscosity at elongation. Sorting 

out these values one may get quite a good correlation between calculated and experimental curves 

[33, 38]. 

For Bralen polyethylene samples and for further calculations due to model (4), (5) the following 

parameter values were chosen: 0,95B  , 0,005P  , 0 1,5  . They have been calculated due to 

expression (7) which provides for a more reliable result than intuitive sorting out applied earlier in 

[13]. Dimensional parameters   и   are presented in table 1.  

As Figure 2 shows, model (4), (5) describes quite precisely gradient dependences of viscosity at 

simple shear and uniaxial elongation. Specifically, one can see well the non-monotonous behavior 

of the dependence of elongation viscosity    11 22      , and the effect of anomaly for shear 

viscosity   12 1212v v  , where   — elongation velocity, а 12v  — shear velocity. Besides, Koks-

Mertz rule is carried out [2, 45], according to which (at given 12v  ) complex viscosity measured 

in SAOS experiment and the set shear viscosity can be united: 

 

          
2 2*

12v G G         .  

Figure 3 demonstrates the results of calculations for setting shear viscosity in a sample of Bralen 

industrial polymer material. Also, for comparative purposes Figure 4 contains the experimental data 

and corresponding non-stationary dependences of the first-order difference of normal stresses. 

 
Fig. 2. Comparing the calculated gradient dependences of stationary viscosity at elongation and simple 

shear with experimental data. 
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Fig. 3. Shear viscosity dependences on time at varied values of shear velocity: calculations (unbroken lines) 

and experiment (symbols). 

 
Fig. 4. Dependences of the first-order difference of normal stresses on time at varied values of shear velocity: 

calculations (unbroken lines) and experiment (symbols). 

The results of calculations for time dependences of setting viscosity at uniaxial elongation are 

presented in Figure 5. Increasing monotonously, the curves level off. It can be noticed that the 

higher the elongation velocity, the faster viscosity reaches its ultimate value. As deformation 

starts, the calculated curves correspond well with the graphs built due to the experimental 

data. However, later the experimental curves experience a drastic drop which may be 

connected with sample destruction at extended elongation. Notably, this drawback remains in 

other rheological models [3, 5, 47]. 
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Fig. 5. Dependences of setting viscosity at uniaxial elongation and various values of elongation velocity: 

calculations (unbroken lines) and experiment (symbols). 

 

In order to compare the modified Vinogradov-Pokrovsky model (4), (5) with other famous 

rheological models, the results of works [11, 16, 33, 48] were studied. There obtained experimental 

dependences are collated with the calculated ones due to the modified Leonov-Prokunin model [4], 

«Pom–Pom» model [5] and XPP model [8]. The data analysis stated that the model described by 

correlations (4), (5) possess a better prognostic ability than for Leonov-Prokunin and «Pom–Pom» 

models and comes close to that of XPP model. Besides, its predictive accuracy increases 

significantly compared to the single-mode approximation of mVP model [6, 14–15]. 

Also when comparing the calculated data shown in Figures 2-5 and those taken from work [13] 

which were calculated due to formulas (6) it shows that viscometric functions differ insignificantly. As 

it was stated above, correlations (5) are preferable since they describe well the behavior of elongation 

viscosity at high elongation velocities [49]. 

Since studying viscometric functions does not help to finally opt for a particular rheological 

model, it makes sense to refer to other types of shear flows. This may be the high-amplitude shear 

deformation [9–12, 17–24] or superposition of small oscillating motions over the simple shear flow 

[25–29]. 

 

6. High-amplitude shear deformation 

 

According to the calculations given in paragraphs 3-5 and their comparisons with experimental 

data, it can be stated that model (4), (5) is feasible to be applied as an initial approximation at 

forecasting nonlinear and viscoelastic properties of fluid polymer media with linear or branched 

structures [13, 47 ,48]. The calculations due to model (4), (5) have been carried out via method 

Runge-Kutta and integrated MATLAB subprograms. 

Now we will consider the deformation process, which follows the harmonic law: 

   0 sint t   , where 0  — a set amplitude,   — oscillation frequency. At such deformation 

the tensor of velocity gradients has only one nonzero component    012 cost tv    . 

Basing on equations (4), (5), the modeling results demonstrate that should deformation start from 

the rest state   0 0ik  , the oscillations in the polymer become periodical rather quickly. 

Theoretical dependences obtained within time 010 , are presented in Figure 6. At small oscillations 

amplitude one can observe the direct proportion of shear stresses popping up in the system and the 

deformation scale. Thus, the material response presents itself as a proper harmonica. Should the 

oscillations be of large amplitude, the polymer media does not reveal this property and the time 
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dependence of shear stress becomes more complex. These results are proved by experimental data 

(see e.g. [10]). 

 

 
Fig. 6. Dependences on stress time at simple shear for various values of a deformation amplitude. 

 

Numerous works are dedicated to the research into periodic deformations impact on the polymer 

system (see references [10, 11, 47, 49]). For example, work [11] shows the results of the 

experimental study for periodic deformations of large amplitude (between 50% and 4000%) 

frequency being 0,2  Hz. Concentrated solution of polyethylene oxide (mass concentration of 

5%) in dimethyl sulfoxide. The experiment details are given in [11]. 

In order to hold the calculations they applied single-mode approximation for model (4), (5). 

While modeling of periodic deformations with small amplitude, first they found the optimal 

parameter values: 0 0,21   с, 0 2,76   Paс,      00 00,037 tr 1 tr  β p a p a  , 0 0,003p  . 

  

  
 

Fig. 7. Calculated and experimental Lissajous figures for shear stress dependence on deformation; 

relative deformation amplitudes are equal correspondingly: 5 (а), 10 (б), 20 (в), 40 (г). 
 

в

  а 

г

  а 

а

  а 

б

  а 
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Later, considering these values, they found theoretical dependences for large amplitude 

deformations which were compared with experimental curves [11]. 

To present the results graphically Lissajous figures were constructed, i.e. phase portraits of the 

stress dependence on deformation at various amplitudes and frequencies (Fig.7). For better visual 

clarity, normalization was done (current values were referred to maximal ones) both for shear 

stresses and shear velocity. It is observed that at small deformation amplitudes Lissajous figures get 

ellipsoid-shaped whereas at larger amplitudes they get “corners” and even contrary flexures which 

correspond well with the experimental data. 

Based on the  results obtained, the following conclusions can be drawn: 

– the larger the harmonic oscillations amplitude, the stronger the nonlinear response is from the 

material under study to the applied impact [11]; 

– the modified Vinogradov-Pokrovsky model (4), (5) is capable of describing precisely the rheology 

of fluid polymer media under periodic deformation of large amplitude. 

 

7. The superposition of oscillating and shear flows 

 

In paragraphs 3-6 the behavior of polymer fluids was studied at oscillating shear deformations 

and at simple shear and uniaxial elongation. Also at shear deformation the processes with fluids of 

complex structure can be characterized by simultaneous stationary and oscillating deformation. 

Such processes are widely spread in various areas e.g. 3D printing, coating at polymer processing, 

blood coagulating which impacts clot forming and functioning [51]. It might seem that their 

solution requires solving a complete hydrodynamic task. However, it may be limited by the case 

when velocity gradients are a combination of a simple shear and oscillations, while the nonzero 

component of the tensor of velocity gradients looks as following: 

 

    12 1 0 cost t      .  

 

This corresponds with the superposition of the simple shear flow and forcing oscillations in 

parallel directions. Initial characteristics are stationary shear rate 1  and relative amplitude of 

sinusoidal oscillations 0 . Let 0  be the maximal relaxation time of the polymer system. At 

0 0 1    the experimental implementation of such flows does not cause any difficulties [25–30].  

 
Fig. 8. The impact of the relative amplitude of forcing oscillations 0  on the dependence of shear stress on time 

at 0 0,2  ; 0 0 05,0p   and fixed stationary shear velocity  1 2  с
-1

. 
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Due to the obtained data one constructs frequency dependences of components of shear dynamic 

module at various values of 
1 . Nevertheless, the following case is quite curious: when velocity 

0  

corresponds with value 
0 1   or exceeds it.Let us consider the behavior of nonlinear response of the 

polymer system basing on the single-mode version of mVP model (4), (5). Since it was not possible 

to find the experimental data for this particular case, to hold calculations we will opt for the 

following model parameters [47]: 
0 1   с;      0 0 0 2β 0,2 tr 1 t 0,rp p  a a ; 0 0,005p 

; 1  . Value 
0  is not required as we are going to consider the dependence of dimensionless value 

   12 0 03t  
 on dimensionless time 0t   at variations of parameters 

1  
0 . 

 

 

 
Fig. 9. The impact of the size of stationary shear velocity 1  on the stress-time dependence at  0 0,2  ; 

0 0,005p   and small ( 0 0,2  ) (а), medium ( 0 5  ) (б), large ( 0 50  ) (в) amplitude of forcing 

oscillations. 

а

  а 

б

  а 

в

  а 
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When deformation appears due to external impact periodically changing in time, the polymer 

system goes from the state of rest into its stationary state characterized by the accumulated tangent 

stresses, and it executes forced oscillations close to this state. Should the stationary shear velocity 

be fixed (
1 const  ), the amplitude of forced oscillations depends nonlinearly on the relative 

amplitude of forcing impact. Besides, at growing amplitude the shape of forced oscillations deviates 

from the regular harmonica in a non-symmetric way (Fig.8). 

When the relative amplitude of forcing oscillations is fixed ( 0 const  ) and the stationary shear 

velocity is alternating, the curves of stresses-time dependences are stacked up. At low velocities 

of stationary shear the amplitude of forced oscillations does not change, whereas at high 

velocities of stationary shear the amplitude of forced oscillations reduces. At the start of forced 

oscillations we observe broken time in polymer motion which is well seen in graphs. Further on 

this oscillation process gets set and has a steady period and constant amplitude. 

At low values of stationary shear velocity the stresses behavior gets sinusoidal. At growing 
1  

the sinusoid starts curving smoothly and flat-lining. At quite high values of 
1  and low value of the 

amplitude of forcing oscillations 0  graph gets almost straight and parallel to X-axis (Fig. 9а). 

We also have considered how the shear stresses are influenced by stationary shear velocity 

within the range between 0 and 50. Figures 9б, в demonstrate the graphs for medium and large 

values of the forcing oscillations amplitude. The given curves reveal the transition and later the 

steady process. However, there are significant differences between fragments (б) and (в). 

Therefore, the smaller the forcing oscillations amplitude, the closer to X-axis the peaks of stresses 

curves are located and the transition process is less noticeable. When the stationary shear velocity 

1  increases, graphs start curving, but, unlike Figures 8 and 9а, they are less sinusoid-like. At the 

same time, the larger the forcing oscillations amplitude 
0  and the higher the stationary shear 

velocity 1 , the more significantly the curves get deformed. 

 

8. Conclusion 

 

The work reviews the current information in mesoscopic modeling of flows, solutions and melts 

of polymers with various structures. The majority of currently popular rheological defining relations 

are of similar structure accurate to some dissipative function. The researchers have suggested a new 

version of the modified Vinogradov-Pokrovsky rheological model (4), (5). Based on it, linear and 

nonlinear effects have been studied for the industrial polyethylene sample at the simultaneous 

impact of simple shear and uniaxial elongation. The calculations for the authors’ model were 

carried out via Runge-Kutta model with the help of integrated subprograms of the computational 

environment MATLAB. The new model was proved to adequately describe frequency dependences 

of the components of the shear dynamic module and transition processes at setting stresses in the 

shear fluid and uniaxial elongation. The written sources provided for the experimental data on the 

polyethylene melt taken for comparative reasons. Basing on the suggested model (4), (5), we 

studied the behavior of nonlinear viscoelastic response of the polymer material at large periodic 

deformations (LAOS).  

The results of calculations for solution curves within coordinates “normalized shear stresses –

normalized deformations” were compared with the experimental data obtained for the polyethylene 

oxide solution in dimethyl sulfoxide. The polymer sample behaves nonlinearly as it reveals the 

distorted viscoelastic material response to sinusoidal oscillations. Besides, the shear stresses curves 

do not look like regular harmonicas any more since the leading edge of the response demonstrates 

the so-called “step”, and the proportionality factor between the stresses amplitude and shear 

amplitude is not constant: it is a decay function of the shear amplitude. 

Considering the superposition of the oscillating shear flow over the simple shear, we can observe 

the distortion of viscoelastic response. However, unlike LAOS deforming, the distortion for upper 
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and lower half-waves happens differently. The lower half-wave appear to be smoother and the 

distinctive “step” resides only in the upper half-wave. As no experimental data was found for this 

case, one should hope the results of this work will stimulate the researchers who study nonlinear 

viscoelastic properties of polymer solutions and melts. 

The new version of mVP model (4), (5) goes in line with the experimental data. It also describes 

the stationary and non-stationary dependences of viscometric functions at the simultaneous impact 

of the simple shear and uniaxial elongation on the polymer with appropriate practical accuracy. This 

model provides for a more adequate presentation at higher elongation velocities and demonstrates 

high precision at LAOS deforming, which may become the basis for further research of 

rheologically more complex flows, e.g. at the superposition of the oscillating shear flow over the 

simple shear or flows in the areas with complex geometry.  
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