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A mathematical model is presented that describes the propagation of a plane longitudinal wave in a porous fluid-

saturated medium, taking into account the geometric nonlinearity of the liquid component of the medium. The 

nonlinear relationship between deformations and displacements refines the classical Biot theory, within the framework 

of which a porous fluid-saturated medium is considered. Evolutionary equations for the displacements of the skeleton 

of the medium and fluid in the pores are obtained. It is shown that if the liquid is confined in the pores, then the wave 

propagation is described by an equation that generalizes the well-known Burgers equation and has a solution in the 

form of a stationary shock wave resulting from mutual compensation of the effects of nonlinearity and dissipation. The 

dependence of the width of the shock wave front on the viscosity of the fluid saturating the pores and the shock wave 

amplitude is determined. As the viscosity coefficient increases, the wave profile becomes steeper, that is, the wave 

front width decreases. With an increase in the wave amplitude, the front width can either increase or decrease, 

depending on the other parameters of the original system. The limiting cases of the obtained generalized Burgers 

equation are analyzed with respect to the fluid viscosity parameter. If the liquid flows freely in the pores, then the 

system of evolutionary equations is reduced to a single equation of a simple wave, that is, the propagation of a plane 

longitudinal wave in a porous medium is described by the well-known equation of nonlinear wave dynamics - the 

Riemann equation. The equation describes nonlinear waves, which are characterized by a steepening of the leading 

edge with subsequent overturning resulting from the growth of nonlinear effects in the absence of compensating factors 

such as dispersion and dissipation. 
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Mathematical models of deformable porous media are widely used in the study of processes in 

geophysics, mechanics of natural and artificial composite materials. In calculations, both classical 

models dating back to the works by M.A. Biot [1, 2], Ya.I. Frenkel [3], F. Gassman [4], L.Ya. 

Kosachevsky [5], and their subsequent modifications [6–36] are used. 

The authors of the most above mentioned papers restrict their studies to the linear theory of 

poroelasticity, however, as shown experimentally in [37], nonlinear effects may be significant in 

porous materials, which is also of particular interest for research. A non-linear generalization of the 

Biot’s model was made in [38]. 

The equations describing the motion of a porous fluid-saturated medium in a one-dimensional 

case with regard to the geometric nonlinearity of the solid and fluid phase will be as follows: 
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where  ,U U x t ,  ,V V x t  – are the displacements of the medium skeleton and liquid in pores 

along the coordinate x , 11 , 22  are the effective densities of the skeleton and fluid in the said 

pores, 12  is the mass coupling coefficient between the fluid and the solid phase, 
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A , N , Q , R  are elastic constants,   2

prb K  ,   is dynamic viscosity of the fluid,   is the 

porosity factor, prK  is the permeability coefficient. 

We seek the solution of equations (1) in the form of asymptotic expansions by the small 

parameter    0 1
...U U U   ,    0 1

...V V V   , where 1  . We shall introduce thereat new 

variables x ct   , t  . This choice of variables is explained by the fact that the perturbation 

propagating with the velocity c  along the axis x  slowly evolves in the course of time because of 

the nonlinearity, dispersion, and dissipation. We assume that the nonlinearity in system (1) has the 

first order of smallness in   and the viscosity is a small value. 

We restrict herein ourselves to considering the nonlinearity only with respect to the fluid 

displacement function  ,V   . 

In the zero-order approximation for   we obtain the following system of equations: 
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The condition for the existence of a non-zero solution for this system is given by the following 

biquadratic equation for determining the velocity 
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of two real and positive roots of the equation, the satisfaction of inequalities for one of the two 

systems shall be necessary 
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The relationships of the adjoint mass density 12  with true phase densities are given, for 

example, in [2] look as follows 11 1 12    , 22 2 12    , 12 0  , 1 , 2  are the densities of 

the solid and liquid phases, respectively. As is evident, 1 0m  . 

The first approximation for   reduces to the following system of evolutionary equations 

 

     

       

11 12 12 22

2

12 11 12 11 11 22 12 12 11

2 2 0

2 0

W G G
c c Q R G

G G
cb W cb G c Q R G

     
  

         
 

  
        


         

  

.                    (2) 

 



V.I. Erofeev, A.V. Leonteva Computational Continuum Mechanics. 2021. Vol. 14. No. 1. pp. 5-11 DOI: 10.7242/1999-6691/2021.14.1.1 

7 

The following designations are herein introduced: 
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The system of equations (2) can be reduced here to a single equation with respect to the 

longitudinal deformation function G : 
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It is known that the classical equation to describe waves in a nonlinear nondispersive medium 

with dissipation is the Burgers’ equation [39, 40]. It is seen from the obtained equation (3) that there 

is no dispersion in the medium under the study. Equation (3) is distinguished from the Burgers’ 

equation by the second time derivative and the availability of one more quadratic nonlinear term 

(the time derivative against the quadratic nonlinearity in the Burgers’ equation). Dissipative terms 

are present explicitly and implicitly in equation (3). The only dissipative term is explicitly included 

in the equation. The additional nonlinear term with respect to the Burgers’ equation partially 

manifests itself as dissipative. That is seen from the linear approximation of relatively small 

perturbations. The availability of nonlinear and dissipative components in the equation (3) enables 

us to make the assumption on the possible existence of stationary shock waves in the medium. 

We consider now stationary wave  G G  , where v     is a travelling coordinate. 

Equation (3) will be as follows: 
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The latter equation is similar with accuracy up to coefficients to the equation shown in [40]. The 

difference is herein in the last term of the equation (4). 

Equation (4) has a solution in the form of a stationary shock wave. By integrating the equation 

once on the travelling coordinate with allowance for the boundary conditions 
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we obtain the following expression for the nonlinear wave velocity 
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The equation obtained by the single integration shall be further integrated once again with 

allowance for shock wave velocity (5) by the method of separation of variables. When the 

integration is repeated, the integration constant is taken as zero. So, we obtain the solution in an 

implicit form: 
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The derivative shall be as follows 
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where G  is determined  from equation (6). 

The profile of the  G   solution and the  G   derivative at different values of the viscosity 

coefficient b  are shown in Fig. 1 and Fig. 2. It can be seen from the Figures that the profile for the 

solution to equation (6) has the form of an asymmetric kink with respect to the inflection point. 

When the viscosity coefficient is decreased, the wave profile becomes flatter, i.e. the wave front 

width increases. 

 

  
Fig. 1. The profile of stationary shock wave 

 G   at various viscosity coefficient values 

shall be 1b  (solid line), 2b  (dash line), 3b  (dash-

dotted line), 3 2 1b b b   

Fig. 2. Dependences of  G   (solid line) and 

 G   (dash line, the graph is shifted along the 

ordinate axis upwards by 1G ) 

 

Parameters of a shock wave resulting from the mutual compensation of nonlinear and dissipative 

effects are linked by the ratio 
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where 
2 1A G G   is the shock wave amplitude,   is the characteristic width of the shock wave 

front and the shock wave velocity v  is determined by expression (5). 

It can be seen from relationship (7) that the dependence of the wave front width on the fluid 

viscosity is inversely proportional. The shock wave front width shall depend on the amplitude in 

inverse proportion with 
1a v A  and in direct proportion with 

1a v A . The relationship of the 

shock wave parameters is different from that of the stationary shock wave in the Burgers’ equation. 

In the classical Burgers’ equation the front width is in the direct-proportion dependence on the 

viscosity. 

As b  tends to zero, i.e. when the viscosity is small to negligible and fluid flows freely through 

pores, equation (3), upon the further integration on   is transformed to equation 
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Equation (8) is a simple wave equation or the Riemann equation [39–42] and it may be solved by 

the method of characteristics as a first-order partial differential equation. 

As the disturbance described by equation (8) propagates, the wave profile is distorted. The wave 

leading edge (facing towards its motion direction) becomes steeper as the wave travel distance 

increases over time and the rear one becomes thereat flatter. Different wave profile sections run at 

different speeds. The wave breaking will occur when characteristics cross for the first time 
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, e  Euler number (exponent). 

Note that in another limiting case, when b  is an infinite large value, we also obtain the Riemann 

equation. 

In nature, processes and technology porous liquid-saturated materials with fluid-filled and 

chaotically located cavities are frequent. Under certain conditions, such cavities induced by an 

elastic wave oscillate and affect significantly the patterns of the wave propagation. As shown in 

[43–45], along with the geometric (nonlinear relationship between deformations and displacements) 

and physical (nonlinear relationship between stresses and deformations) nonlinearities, it is essential 

to take into account the cavity nonlinearity. 
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